mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
astroSpectrum.hpp
Go to the documentation of this file.
1/** \file astroSpectrum.hpp
2 * \author Jared R. Males
3 * \brief A class for working with astronomical spectra.
4 * \ingroup astrophot
5 *
6 */
7
8#ifndef mx_astro_astroSpectrum_hpp
9#define mx_astro_astroSpectrum_hpp
10
11#include <cmath>
12
13#include "../sys/environment.hpp"
14#include "../ioutils/readColumns.hpp"
15#include "../math/gslInterpolation.hpp"
16#include "constants.hpp"
17#include "units.hpp"
18
19namespace mx
20{
21namespace astro
22{
23
24/// Base spectrum class which provides manipulation and characterization functionality.
25/**
26 * \ingroup astrophot
27 */
28template <typename realT>
30{
31 std::vector<realT> _spectrum; ///< Contains the spectrum after it is set.
32
33 /// Get the current size of the spectrum
34 /**
35 * \returns the number of points in the spectrum
36 */
37 size_t size()
38 {
39 return _spectrum.size();
40 }
41
42 /// Access a single point in the spectrum, specified by its vector index.
43 /**
44 * \returns a reference to the value at i.
45 */
46 realT &operator[]( size_t i /**< [in] the index of the spectral point*/ )
47 {
48 return _spectrum[i];
49 }
50
51 /// Access a single point in the spectrum, specified by its vector index.
52 /**
53 * \returns the value of point i.
54 */
55 const realT operator[]( size_t i /**< [in] the index of the spectral point*/ ) const
56 {
57 return _spectrum[i];
58 }
59
60 /// Multiply two spectra together.
61 /**
62 * \returns a new baseSpectrum
63 */
64 template <typename compSpectrumT>
65 baseSpectrum<realT> operator*( const compSpectrumT &spec /**< [in] the spectrum to multiply by */ )
66 {
67 baseSpectrum outVec;
68 outVec._spectrum.resize( _spectrum.size() );
69
70 for( int i = 0; i < _spectrum.size(); ++i )
71 {
72 outVec[i] = _spectrum[i] * spec[i];
73 }
74
75 return outVec;
76 }
77
78 /// Calculate the mean value of the spectrum.
79 /**
80 * \returns the mean value of the spectrum
81 */
82 realT mean()
83 {
84 realT sum = 0;
85
86 for( int i = 0; i < _spectrum.size(); ++i )
87 sum += _spectrum[i];
88
89 return sum / _spectrum.size();
90 }
91
92 /// Calculate the mean value of the spectrum when mutiplied by another.
93 /** The result is normalized by the mean value of the input spectrum, equivalent to:
94 * \f[
95 \mu = \frac{\int T(\lambda)S(\lambda) d\lambda}{\int T(\lambda) d\lambda}
96 \f]
97 * For instance, use this to get the mean value of a spectrum in a filter.
98 *
99 * \returns the mean value of the multiplied spectrum.
100 *
101 * \tparam compSpectrumT the vector-like type of the comparison spectrum.
102 */
103 template <typename compSpectrumT>
104 realT mean( const compSpectrumT &T /**< [in] the spectrum to multiply by*/ )
105 {
106 realT sum1 = 0, sum2 = 0;
107
108 for( int i = 0; i < _spectrum.size(); ++i )
109 {
110 sum1 += _spectrum[i] * T[i];
111 sum2 += T[i];
112 }
113
114 return sum1 / sum2;
115 }
116
117 /// Characterize the spectrum as a filter transmission curve.
118 /** For a photonic transmission curve given by \f$ S(\lambda ) \f$ The mean photon wavelength is defined as
119 * \f[
120 \lambda_0 = \frac{1}{\Delta\lambda_{0}}\int \frac{S(\lambda )}{S_{max}} \lambda d\lambda
121 \f]
122 * which Equation A14 of Bessel 2012.
123 *
124 * where the effective width is defined by
125 \f[
126 \Delta\lambda_{o} = \int \frac{S(\lambda )} { S_{max}} d\lambda
127 \f]
128 *
129 * The full-width at half-maximum, FWHM, is the distance between the points at 50% of maximum \f$ S(\lambda) \f$.
130 *
131 */
132 void charTrans( realT &lambda0, ///< [out] the central wavelength of the filter
133 realT &weff, ///< [out] the effective width of the filter
134 realT &max, ///< [out] the maximum value of the transmission curve
135 realT &fwhm, ///< [out] the full-width at half-maximum of the filter profile
136 std::vector<realT> &lambda ///< [in] the wavelength scale, should correspond to the spectrum.
137 )
138 {
139 size_t N = lambda.size();
140 realT dl = lambda[1] - lambda[0];
141 realT half = static_cast<realT>( 0.5 );
142
143 max = 0;
144 for( int i = 0; i < N; ++i )
145 {
146 if( _spectrum[i] > max )
147 max = _spectrum[i];
148 }
149
150 weff = half * _spectrum[0];
151 for( int i = 1; i < N - 1; ++i )
152 weff += _spectrum[i];
153 weff += half * _spectrum[N - 1];
154 weff *= dl / max;
155
156 lambda0 = half * lambda[0] * _spectrum[0];
157 for( int i = 1; i < N - 1; ++i )
158 lambda0 += lambda[i] * _spectrum[i];
159 lambda0 += half * lambda[N - 1] * _spectrum[N - 1];
160 lambda0 *= dl / max / weff;
161
162 realT left, right;
163
164 int i = 1;
165 while( i < lambda.size() )
166 {
167 if( _spectrum[i] >= 0.5 * max )
168 break;
169 ++i;
170 }
171
172 // Interpolate
173 left = lambda[i - 1] + ( 0.5 * max - _spectrum[i - 1] ) * ( dl / ( _spectrum[i] - _spectrum[i - 1] ) );
174
175 i = N - 2;
176 while( _spectrum[i] < 0.5 * max )
177 {
178 --i;
179 if( i < 0 )
180 break;
181 }
182
183 right = lambda[i] + ( _spectrum[i] - 0.5 * max ) * ( dl / ( _spectrum[i] - _spectrum[i + 1] ) );
184
185 fwhm = right - left;
186 }
187
188 /// Characterize the flux densities of the spectrum w.r.t. a filter transmission curve
189 /** To obtain the flux (e.g. W/m^2) multiply these quantities by the effective width calculated using
190 * \ref charTrans.
191 *
192 * This implements Equations A11, A12, and A13 of Bessel 2012.
193 *
194 * \warning this only produces correct fphot0 for a spectrum in W/m^3. DO NOT USE FOR ANYTHING ELSE.
195 *
196 * \todo use unit conversions to make it work for everything.
197 * \todo check on integration method, should it be trap?
198 *
199 */
200 template <class filterT>
201 void charFlux( realT &flambda0, ///< [out] the flux of the star at \f$ \lambda_0 \f$ in W/m^3
202 realT &fnu0, ///< [out] the flux of the star at \f$ \lambda_0 \f$ in W/m^2/Hz
203 realT &fphot0, ///< [out] the flux of the star at \f$ \lambda_0 \f$ in photons/sec/m^3
204 const realT &lambda_0, ///< [in] the mean photon wavelength lambda_0 (from charTrans).
205 const std::vector<realT> &lambda, ///< [in] the wavelength scale of this spectrum.
206 const filterT &trans ///< [in] the filter transmission curve over which to characterize, on the same
207 ///< wavelength grid.
208 )
209 {
210 charFlux( flambda0, fnu0, fphot0, lambda_0, lambda, trans._spectrum );
211 }
212
213 /// Characterize the flux densities of the spectrum w.r.t. a filter transmission curve
214 /** To obtain the flux (e.g. W/m^2) multiply these quantities by the effective width calculated using
215 * \ref charTrans.
216 *
217 * This implements Equations A11, A12, and A13 of Bessel 2012.
218 *
219 * \warning this only produces correct fphot0 for a spectrum in W/m^3. DO NOT USE FOR ANYTHING ELSE.
220 *
221 * \todo use unit conversions to make it work for everything.
222 * \todo check on integration method, should it be trap?
223 *
224 */
225 void charFlux( realT &flambda0, ///< [out] the flux of the star at \f$ \lambda_0 \f$ in W/m^3
226 realT &fnu0, ///< [out] the flux of the star at \f$ \lambda_0 \f$ in W/m^2/Hz
227 realT &fphot0, ///< [out] the flux of the star at \f$ \lambda_0 \f$ in photons/sec/m^3
228 const realT &lambda_0, ///< [in] the mean photon wavelength lambda_0 (from charTrans).
229 const std::vector<realT> &lambda, ///< [in] the wavelength scale of this spectrum.
230 const std::vector<realT> &trans ///< [in] the filter transmission curve over which to characterize,
231 ///< on the same wavelength grid.
232 )
233 {
234 constexpr realT h = constants::h<units::si<realT>>();
235 constexpr realT c = constants::c<units::si<realT>>();
236
237 size_t N = lambda.size();
238 realT dl = lambda[1] - lambda[0];
239 realT half = static_cast<realT>( 0.5 );
240
241 // flambda0 -- Eqn A11
242
243 realT denom = half * trans[0] * lambda[0];
244 for( int i = 1; i < N - 1; ++i )
245 denom += trans[i] * lambda[i];
246 denom += half * trans[N - 1] * lambda[N - 1];
247 denom *= dl;
248
249 realT num = half * _spectrum[0] * trans[0] * lambda[0];
250 for( int i = 1; i < N - 1; ++i )
251 num += _spectrum[i] * trans[i] * lambda[i];
252 num += half * _spectrum[N - 1] * trans[N - 1] * lambda[N - 1];
253 num *= dl;
254
255 flambda0 = num / denom;
256
257 // fnu0 -- Eqn A12
258
259 denom = half * trans[0] / lambda[0];
260 for( int i = 1; i < N - 1; ++i )
261 denom += trans[i] / lambda[i];
262 denom += half * trans[N - 1] / lambda[N - 1];
263 denom *= dl * c;
264
265 fnu0 = num / denom;
266
267 // fphot0 -- Eqn A13
268
269 fphot0 = flambda0 * lambda_0 / ( h * c );
270 }
271};
272
273/// Class to manage an astronomical spectrum.
274/** Details of the spectra, including units, file-location, and how they are read from disk, are specified by template
275 * parameter _spectrumT: see \ref astrophot_spectra "the available spectrum definitions." Spectra are loaded and
276 * immediately interpolated onto a wavelength grid. This is to facilitate manipulation of spectra, i.e. for multiplying
277 * by filters, etc.
278 *
279 * Inherits functions and operators to manipulate and characterize spectra from \ref mx::astro::baseSpectrum
280 * "baseSpectrum".
281 *
282 * \tparam _spectrumT is the underlying spectrum type, which provides (through static interfaces) the specifications of
283 * how to read or calculate the spectrum. \tparam freq specify whether this spectrum uses frequency instead of
284 * wavelength. Default is false.
285 *
286 * \ingroup astrophot
287 */
288template <typename _spectrumT, bool freq = false>
289struct astroSpectrum : public baseSpectrum<typename _spectrumT::units::realT>
290{
291 typedef _spectrumT spectrumT;
292 typedef typename spectrumT::units units;
293 typedef typename units::realT realT;
294 typedef typename spectrumT::paramsT paramsT;
295
296 std::string _dataDir; ///< The directory containing the spectrum
297
298 paramsT _params; ///< The parameters of the spectrum, e.g. its name or the numerical parameters needed to generate
299 ///< the name.
300
301 /// Default c'tor
303 {
304 }
305
306 /// Constructor specifying name, the enivronment will be queried for data directory.
307 explicit astroSpectrum( const paramsT &params /**< [in] The name of the spectrum */ )
308 {
309 setParameters( params );
310 }
311
312 /// Constructor specifying name and data directory.
313 astroSpectrum( const paramsT &params, ///< [in] The name of the spectrum
314 const std::string &dataDir ///< [in] The directory containing the spectrum
315 )
316 {
317 setParameters( params, dataDir );
318 }
319
320 /// Set the parameters of the spectrum, using the underlying spectrums parameter type.
321 int setParameters( const paramsT &params /**< [in] The name of the spectrum */ )
322 {
323 _params = params;
324
325 if( spectrumT::dataDirEnvVar )
326 {
327 _dataDir = sys::getEnv( spectrumT::dataDirEnvVar );
328 }
329
330 return 0;
331 }
332
333 /// Set the parameters of the spectrum, using the underlying spectrum's parameter type.
334 /** This version also sets the data directory, instead of using the enivronment variable.
335 *
336 * \overload
337 */
338 int setParameters( const paramsT &params, ///< [in] The name of the spectrum
339 const std::string &dataDir ///< [in] The directory containing the spectrum
340 )
341 {
342 _params = params;
343 _dataDir = dataDir;
344
345 return 0;
346 }
347
348 /// Load the spectrum and interpolate it onto a wavelength scale.
349 template <typename gridT>
350 int setSpectrum( gridT &lambda )
351 {
352 std::vector<realT> rawLambda;
353 std::vector<realT> rawSpectrum;
354
355 std::string fileName = spectrumT::fileName( _params );
356
357 std::string path;
358
359 if( fileName.size() < 1 )
360 {
361 mxError( "astroSpectrum", MXE_PARAMNOTSET, "fileName is empty" );
362 return -1;
363 }
364
365 if( _dataDir == "" && fileName[0] == '/' )
366 {
367 path = fileName;
368 }
369 else
370 {
371 if( _dataDir == "" )
372 _dataDir = ".";
373
374 path = _dataDir + "/" + fileName;
375 }
376
377 if( spectrumT::readSpectrum( rawLambda, rawSpectrum, path, _params ) < 0 )
378 {
379 return -1; ///\returns -1 on an error reading the spectrum.
380 }
381
382 // Unit conversions
383 for( int i = 0; i < rawLambda.size(); ++i )
384 {
385 rawLambda[i] /= spectrumT::wavelengthUnits / ( units::length );
386 rawSpectrum[i] /= spectrumT::fluxUnits /
387 ( units::energy / ( units::time * units::length * units::length * units::length ) );
388 }
389
390 math::gsl_interpolate( ::gsl_interp_linear, rawLambda, rawSpectrum, lambda, this->_spectrum );
391
392 for( int i = 0; i < lambda.size(); ++i )
393 {
394 if( !std::isnormal( this->_spectrum[i] ) )
395 this->_spectrum[i] = 0;
396 }
397
398 return 0; ///\returns 0 on success.
399 }
400};
401
402} // namespace astro
403
404} // namespace mx
405
406#endif // mx_astro_astroSpectrum_hpp
int gsl_interpolate(const gsl_interp_type *interpT, realT *xin, realT *yin, size_t Nin, realT *xout, realT *yout, size_t Nout)
Interpolate a 1-D data X vs Y discrete function onto a new X axis.
std::string getEnv(const std::string &estr)
Return the value of an environment variable.
The mxlib c++ namespace.
Definition mxError.hpp:106
Class to manage an astronomical spectrum.
astroSpectrum()
Default c'tor.
int setSpectrum(gridT &lambda)
Load the spectrum and interpolate it onto a wavelength scale.
int setParameters(const paramsT &params)
Set the parameters of the spectrum, using the underlying spectrums parameter type.
int setParameters(const paramsT &params, const std::string &dataDir)
Set the parameters of the spectrum, using the underlying spectrum's parameter type.
astroSpectrum(const paramsT &params, const std::string &dataDir)
Constructor specifying name and data directory.
std::string _dataDir
The directory containing the spectrum.
astroSpectrum(const paramsT &params)
Constructor specifying name, the enivronment will be queried for data directory.
Base spectrum class which provides manipulation and characterization functionality.
size_t size()
Get the current size of the spectrum.
const realT operator[](size_t i) const
Access a single point in the spectrum, specified by its vector index.
void charTrans(realT &lambda0, realT &weff, realT &max, realT &fwhm, std::vector< realT > &lambda)
Characterize the spectrum as a filter transmission curve.
realT & operator[](size_t i)
Access a single point in the spectrum, specified by its vector index.
realT mean()
Calculate the mean value of the spectrum.
void charFlux(realT &flambda0, realT &fnu0, realT &fphot0, const realT &lambda_0, const std::vector< realT > &lambda, const std::vector< realT > &trans)
Characterize the flux densities of the spectrum w.r.t. a filter transmission curve.
void charFlux(realT &flambda0, realT &fnu0, realT &fphot0, const realT &lambda_0, const std::vector< realT > &lambda, const filterT &trans)
Characterize the flux densities of the spectrum w.r.t. a filter transmission curve.
std::vector< realT > _spectrum
Contains the spectrum after it is set.
baseSpectrum< realT > operator*(const compSpectrumT &spec)
Multiply two spectra together.
realT mean(const compSpectrumT &T)
Calculate the mean value of the spectrum when mutiplied by another.
Unit specifications and conversions.