|
mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
|
Utilities for working with the Logistic Function.
Functions | |
| template<typename floatT > | |
| floatT | mx::math::func::logistic_param (floatT x, floatT thalf) |
| Return the logistic function parameter for a specified rise time. | |
| template<typename floatT > | |
| floatT | mx::math::func::logistic (floatT t, floatT t0=0, floatT a=1) |
| Return the value of the logistic function. | |
| floatT mx::math::func::logistic | ( | floatT | t, |
| floatT | t0 = 0, |
||
| floatT | a = 1 |
||
| ) |
Return the value of the logistic function.
The logistic function is
\[ f(t) = \frac{1}{1 + e^{-a(t-t_0)}} \]
| t | [input] the argument. |
| t0 | [input] [optional] the center of the curve, defaults to 0. |
| a | [input] [optional] the exponent parameter, defaults to 1. |
| floatT | is the floating point type of the arguments and the returned value. |
Definition at line 81 of file logistic.hpp.
References mx::math::six_fifths().
| floatT mx::math::func::logistic_param | ( | floatT | x, |
| floatT | thalf | ||
| ) |
Return the logistic function parameter for a specified rise time.
The logistic function is
\[ f(t) = \frac{1}{1 + e^{-a(t-t_0)}} \]
The parameter \( a \) controls how fast the function rises. Here it is specified by the value \( f(t_{1/2}) = x\), where \( 0 < x < 1 \).
| floatT | is the floating point type of the arguments and the returned value. |
| [in] | x | the value at which the rise time is specified. |
| [in] | thalf | half the rise time, or the time after 0 when f(t) = x. |
Definition at line 57 of file logistic.hpp.
References mx::math::six_fifths().