1#ifndef __pywfsSlopeReconstructor_hpp__
2#define __pywfsSlopeReconstructor_hpp__
4#include <mx/improc/eigenCube.hpp>
13struct pywfsSlopeReconstructorSpec
16 std::string basisName;
24template <
typename _
floatT>
28 typedef _floatT floatT;
34 typedef Eigen::Array<floatT, -1, -1>
imageT;
37 typedef Eigen::Array<floatT, -1, -1>
rmatT;
39 typedef pywfsSlopeReconstructorSpec specT;
73 template <
typename AOSysT>
74 void initialize( AOSysT &AOSys, specT &spec )
76 std::string recMatrix = mx::AO::path::sys::cal::iMat(
77 AOSys._sysName, spec.dmName, AOSys._wfsName, AOSys._pupilName, spec.basisName, spec.rMatId );
109 void maskFile(
const std::string &mf );
149 template <
typename measurementT,
typename wfsImageT>
153 template <
typename measurementT,
typename wfsImageT>
154 void reconstruct( measurementT &commandVect, wfsImageT &wfsImage );
163 void initializeRMat(
int nmodes, floatT calamp,
int detrows,
int detcols );
170 template <
typename measurementT>
173 template <
typename measurementT,
typename wfsImageT>
174 void accumulateRMat(
int i, measurementT &measureVec, wfsImageT &wfsImage );
182 void saveRImages( std::string fname );
185template <
typename floatT>
189 _maskObscuration = 0;
196template <
typename floatT>
202template <
typename floatT>
210template <
typename floatT>
213 return _maskObscuration;
216template <
typename floatT>
219 _maskObscuration = mo;
224template <
typename floatT>
230template <
typename floatT>
238template <
typename floatT>
244template <
typename floatT>
250template <
typename floatT>
256template <
typename floatT>
262template <
typename floatT>
269template <
typename floatT>
275template <
typename floatT>
282template <
typename floatT>
285 improc::fitsFile<floatT> ff;
286 improc::fitsHeader head;
288 ff.read( fname, _recon, head );
290 _maskRadius = head[
"MASKRAD"].Value<floatT>();
291 _maskObscuration = head[
"MASKOBS"].Value<floatT>();
292 _maskFile = head[
"MASKFILE"].String();
294 if( _maskFile !=
"" )
297 _calAmp = head[
"CALAMP"].Value<floatT>();
299 _nModes = head[
"NMODES"].Value<
int>();
301 _detRows = head[
"DETROWS"].Int();
302 _detCols = head[
"DETCOLS"].Int();
307template <
typename floatT>
312 improc::fitsFile<floatT> ff;
314 std::cerr <<
"Loading Mask: " << _maskFile <<
"\n";
315 ff.read( _maskFile, _quadMask );
318 _quadMask.resize( 0.5 * _detRows / _binFact, 0.5 * _detCols / _binFact );
322 _measurementSize = 2 * _quadMask.sum();
326 improc::fitsFile<floatT> ff;
327 ff.write(
"quadMask.fits", _quadMask );
330template <
typename floatT>
335 return _measurementSize;
338template <
typename floatT>
339template <
typename measurementT,
typename wfsImageT>
349 std::cout <<
"rebinning" <<
"\n";
350 _wfsImage.resize( wfsImage.image.rows() / _binFact, wfsImage.image.cols() / _binFact );
351 imageDownSample( _wfsImage, wfsImage.image );
355 _wfsImage = wfsImage.image;
358 int nsz = _wfsImage.rows();
360 int nPix = _quadMask.sum();
362 std::vector<int> x( nPix ), y( nPix );
365 for(
int i = 0; i < _quadMask.rows(); ++i )
367 for(
int j = 0; j < _quadMask.rows(); ++j )
369 if( _quadMask( i, j ) == 1 )
378 slopes.measurement.resize( 1, 2. * nPix );
380 floatT I0, I1, I2, I3;
382 floatT norm = _wfsImage.sum();
384 for(
int i = 0; i < nPix; ++i )
386 I0 = _wfsImage( x[i], y[i] );
387 I1 = _wfsImage( x[i] + 0.5 * nsz, y[i] );
388 I2 = _wfsImage( x[i], y[i] + 0.5 * nsz );
389 I3 = _wfsImage( x[i] + 0.5 * nsz, y[i] + 0.5 * nsz );
393 slopes.measurement( 0, i ) = 0;
395 slopes.measurement( 0, i + nPix ) = 0;
399 slopes.measurement( 0, i ) = ( I0 + I1 - I2 - I3 ) / norm;
400 slopes.measurement( 0, i + nPix ) = ( I0 + I2 - I1 - I3 ) / norm;
414template <
typename floatT>
415template <
typename measurementT,
typename wfsImageT>
420 calcMeasurement( slopes, wfsImage );
422 commandVect.measurement = slopes.measurement.matrix() * _recon.matrix();
424 commandVect.iterNo = wfsImage.iterNo;
427template <
typename floatT>
438 _rMat.resize( measurementSize(), nModes );
441 _rImages.resize( _detRows, _detCols, _nModes );
444template <
typename floatT>
445template <
typename measurementT>
448 _rMat.col( i ) = measureVec.measurement.row( 0 );
451template <
typename floatT>
452template <
typename measurementT,
typename wfsImageT>
455 accumulateRMat( i, measureVec );
457 _rImages.image( i ) = wfsImage.image;
460template <
typename floatT>
463 improc::fitsFile<floatT> ff;
464 improc::fitsHeader head;
468 head.append(
"MASKFILE", maskFile(),
"Name of mask file" );
472 head.append(
"MASKRAD", maskRadius(),
"Mask radius, in pixels" );
473 head.append(
"MASKOBS", maskObscuration(),
"Mask fractional central obscuration" );
476 head.append(
"DETROWS", _detRows,
"WFS detector rows" );
477 head.append(
"DETCOLS", _detCols,
"WFS detector cols" );
478 head.append(
"CALAMP", _calAmp,
"DM Calibration amplitude" );
479 head.append(
"NMODES", _nModes,
"Number of modes included in the response matrix." );
482 ff.write( fname, _rMat, head );
485template <
typename floatT>
488 improc::fitsFile<floatT> ff;
489 improc::fitsHeader head;
493 head.append(
"MASKFILE", maskFile(),
"Name of mask file" );
497 head.append(
"MASKRAD", maskRadius(),
"Mask radius, in pixels" );
498 head.append(
"MASKOBS", maskObscuration(),
"Mask fractional central obscuration" );
501 head.append(
"DETROWS", _detRows,
"WFS detector rows" );
502 head.append(
"DETCOLS", _detCols,
"WFS detector cols" );
503 head.append(
"CALAMP", _calAmp,
"DM Calibration amplitude" );
504 head.append(
"NMODES", _nModes,
"Number of modes included in the response matrix." );
507 ff.write( fname, _rImages, head );
A Pyramid Wavefront Sensor slope reconstructor.
floatT calAmp()
Get the calibration amplitude used in response matrix acquisition (_calAmp)
int _detCols
The size of the WFS image, in columns.
void reconstruct(measurementT &commandVect, wfsImageT &wfsImage)
Reconstruct the wavefront from the input image, producing the modal amplitude vector.
int _detRows
The size of the WFS image, in rows.
int nModes()
Get the number of modes (_nModes)
floatT _maskRadius
0 is centrally obscured circle, 1 is supplied by fits files
std::string _maskFile
The name of the quadrant mask file.
void saveRMat(std::string fname)
Write the accumulated response matrix to disk.
floatT maskObscuration()
Get the quadrant mask central obscuration ratio (_maskObscuration)
Eigen::Array< floatT, -1, -1 > _recon
The reconstructor matrix.
Eigen::Array< floatT, -1, -1 > _quadMask
The quadrant mask.
int _nModes
The number of modes to be reconstructed.
int detCols()
Get the number of detector columns (_detCols)
int _measurementSize
The number of slopes in the measurement.
Eigen::Array< floatT, -1, -1 > imageT
The type of the measurement (i.e. the slope vector)
int measurementSize()
Return the size of the unbinned measurement.
bool _maskMade
Whether or not the mask has been made.
int _binFact
The binning to apply before reconstructing.
floatT _calAmp
The calibration amplitude used for response matrix acquisition.
void calcMeasurement(measurementT &slopes, wfsImageT &wfsImage)
Calculate the slope measurement.
void accumulateRMat(int i, measurementT &measureVec)
Accumalte the next measurement in the response matrix.
Eigen::Array< floatT, -1, -1 > rmatT
The type of the response matrix.
floatT _maskObscuration
The central obscuration of the quadrant mask.
int detRows()
Get the number of detector rows (_detRows)
void loadRecon(std::string fname)
Load the reconstrutor from the specified FITS file.
imageT _rMat
The response matrix.
floatT maskRadius()
Get the quadrant mask radius (_maskRadius)
std::string maskFile()
Get the quadrant mask file name (_maskFile)
void initializeRMat(int nmodes, floatT calamp, int detrows, int detcols)
Initialize the response matrix for acquisition.
pywfsSlopeReconstructor()
Default c'tor.
void calcMask()
Calculates the quadrant mask.
An image cube with an Eigen-like API.
int circularPupil(arrayT &m, typename arrayT::Scalar eps=0, typename arrayT::Scalar rad=0, typename arrayT::Scalar overscan=0)
Fill in an Eigen-like array with a circular pupil mask.