mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
pywfsSlopeReconstructor.hpp
1#ifndef __pywfsSlopeReconstructor_hpp__
2#define __pywfsSlopeReconstructor_hpp__
3
4#include <mx/improc/eigenCube.hpp>
5
6namespace mx
7{
8namespace AO
9{
10namespace sim
11{
12
13struct pywfsSlopeReconstructorSpec
14{
15 std::string dmName;
16 std::string basisName;
17
18 std::string rMatId;
19};
20
21/// A Pyramid Wavefront Sensor slope reconstructor.
22/** Calculates slopes, normalized by total flux in the image.
23 */
24template <typename _floatT>
26{
27 public:
28 typedef _floatT floatT;
29
30 /// The type of the measurement (i.e. the slope vector)
31 // typedef Eigen::Array<floatT,-1,-1> measurementT;
32
33 /// The type of the WFS image
34 typedef Eigen::Array<floatT, -1, -1> imageT;
35
36 /// The type of the response matrix
37 typedef Eigen::Array<floatT, -1, -1> rmatT;
38
39 typedef pywfsSlopeReconstructorSpec specT;
40
41 protected:
42 Eigen::Array<floatT, -1, -1> _recon; ///< The reconstructor matrix.
43
44 int _maskType; /// 0 is centrally obscured circle, 1 is supplied by fits files
45
46 floatT _maskRadius; ///< The radius of the quadrant mask
47 floatT _maskObscuration; ///< The central obscuration of the quadrant mask
48
49 std::string _maskFile; ///< The name of the quadrant mask file
50
51 bool _maskMade; ///< Whether or not the mask has been made
52
53 Eigen::Array<floatT, -1, -1> _quadMask; ///< The quadrant mask
54 void calcMask(); ///< Calculates the quadrant mask
55 int _measurementSize; ///< The number of slopes in the measurement
56
57 floatT _calAmp; ///< The calibration amplitude used for response matrix acquisition
58
59 int _nModes; ///< The number of modes to be reconstructed
60
61 int _detRows; ///< The size of the WFS image, in rows
62 int _detCols; ///< The size of the WFS image, in columns
63
64 imageT _rMat; ///< The response matrix
66
67 public:
68 int _binFact; ///< The binning to apply before reconstructing.
69
70 /// Default c'tor
72
73 template <typename AOSysT>
74 void initialize( AOSysT &AOSys, specT &spec )
75 {
76 std::string recMatrix = mx::AO::path::sys::cal::iMat(
77 AOSys._sysName, spec.dmName, AOSys._wfsName, AOSys._pupilName, spec.basisName, spec.rMatId );
78 loadRecon( recMatrix );
79 }
80
81 /// Get the quadrant mask radius (_maskRadius)
82 floatT maskRadius();
83
84 /// Set the quadrant mask radius (_maskRadius)
85 /** Calling this will cause the quadrant mask to be recalculated next time it is needed.
86 *
87 * \param mr [in] the new mask radius
88 */
89 void maskRadius( floatT mr );
90
91 /// Get the quadrant mask central obscuration ratio (_maskObscuration)
92 floatT maskObscuration();
93
94 /// Set the quadrant mask central obscuration ratio (_maskObscuration)
95 /** Calling this will cause the quadrant mask to be recalculated next time it is needed.
96 *
97 * \param mo [in] the new central obscuration ratio
98 */
99 void maskObscuration( floatT mo );
100
101 /// Get the quadrant mask file name (_maskFile)
102 std::string maskFile();
103
104 /// Set the quadrant mask file name (_maskFile)
105 /** Calling this will cause the quadrant mask to be reloaded next time it is needed.
106 *
107 * \param mf [in] the new mask file
108 */
109 void maskFile( const std::string &mf );
110
111 /// Get the calibration amplitude used in response matrix acquisition (_calAmp)
112 floatT calAmp();
113
114 /// Set the calibration amplitude used in response matrix acquisition (_calAmp)
115 /**
116 * \param ca [in] the new calibration amplitude
117 */
118 void calAmp( floatT ca );
119
120 /// Get the number of modes (_nModes)
121 int nModes();
122
123 /// Get the number of detector rows (_detRows)
124 int detRows();
125
126 /// Set the number of detector rows (_detRows)
127 void detRows( int dr );
128
129 /// Get the number of detector columns (_detCols)
130 int detCols();
131
132 /// Set the number of detector columns (_detCols)
133 void detCols( int dc );
134
135 /// Load the reconstrutor from the specified FITS file
136 /**
137 * \param fname is the name of the FITS file, including path
138 */
139 void loadRecon( std::string fname );
140
141 /// Return the size of the unbinned measurement
142 int measurementSize();
143
144 /// Calculate the slope measurement
145 /**
146 * \param slopes [out] a (_measurementSize X 2) array of slopes
147 * \param wfsImage [in] the WFS image from which to measure the slopes
148 */
149 template <typename measurementT, typename wfsImageT>
150 void calcMeasurement( measurementT &slopes, wfsImageT &wfsImage );
151
152 /// Reconstruct the wavefront from the input image, producing the modal amplitude vector
153 template <typename measurementT, typename wfsImageT>
154 void reconstruct( measurementT &commandVect, wfsImageT &wfsImage );
155
156 /// Initialize the response matrix for acquisition
157 /**
158 * \param nmodes the number of modes
159 * \param calamp the calibration amplitude
160 * \param detrows the number of detector rows
161 * \param detcols the number of detector columns
162 */
163 void initializeRMat( int nmodes, floatT calamp, int detrows, int detcols );
164
165 /// Accumalte the next measurement in the response matrix
166 /**
167 * \param i the measurement index
168 * \param measureVec is the i-th measurement vector
169 */
170 template <typename measurementT>
171 void accumulateRMat( int i, measurementT &measureVec );
172
173 template <typename measurementT, typename wfsImageT>
174 void accumulateRMat( int i, measurementT &measureVec, wfsImageT &wfsImage );
175
176 /// Write the accumulated response matrix to disk
177 /**
178 * \param fname the name, including path, of the response matrix
179 */
180 void saveRMat( std::string fname );
181
182 void saveRImages( std::string fname );
183};
184
185template <typename floatT>
187{
188 _maskRadius = 0;
189 _maskObscuration = 0;
190
191 _maskMade = false;
192
193 _binFact = 1;
194}
195
196template <typename floatT>
198{
199 return _maskRadius;
200}
201
202template <typename floatT>
204{
205 _maskRadius = mr;
206 _maskType = 0;
207 _maskMade = false;
208}
209
210template <typename floatT>
212{
213 return _maskObscuration;
214}
215
216template <typename floatT>
218{
219 _maskObscuration = mo;
220 _maskType = 0;
221 _maskMade = false;
222}
223
224template <typename floatT>
226{
227 return _maskFile;
228}
229
230template <typename floatT>
231void pywfsSlopeReconstructor<floatT>::maskFile( const std::string &mf )
232{
233 _maskFile = mf;
234 _maskType = 1;
235 _maskMade = false;
236}
237
238template <typename floatT>
240{
241 return _calAmp;
242}
243
244template <typename floatT>
246{
247 _calAmp = ca;
248}
249
250template <typename floatT>
252{
253 return _nModes;
254}
255
256template <typename floatT>
258{
259 return _detRows;
260}
261
262template <typename floatT>
264{
265 _detRows = dr;
266 _maskMade = false;
267}
268
269template <typename floatT>
271{
272 return _detCols;
273}
274
275template <typename floatT>
277{
278 _detCols = dc;
279 _maskMade = false;
280}
281
282template <typename floatT>
284{
285 improc::fitsFile<floatT> ff;
286 improc::fitsHeader head;
287
288 ff.read( fname, _recon, head );
289
290 _maskRadius = head["MASKRAD"].Value<floatT>();
291 _maskObscuration = head["MASKOBS"].Value<floatT>();
292 _maskFile = head["MASKFILE"].String();
293
294 if( _maskFile != "" )
295 _maskType = 1;
296
297 _calAmp = head["CALAMP"].Value<floatT>();
298
299 _nModes = head["NMODES"].Value<int>();
300
301 _detRows = head["DETROWS"].Int();
302 _detCols = head["DETCOLS"].Int();
303
304 _maskMade = false;
305}
306
307template <typename floatT>
309{
310 if( _maskType == 1 )
311 {
312 improc::fitsFile<floatT> ff;
313
314 std::cerr << "Loading Mask: " << _maskFile << "\n";
315 ff.read( _maskFile, _quadMask );
316 }
317 {
318 _quadMask.resize( 0.5 * _detRows / _binFact, 0.5 * _detCols / _binFact );
319 wfp::circularPupil( _quadMask, _maskObscuration, _maskRadius / _binFact );
320 }
321
322 _measurementSize = 2 * _quadMask.sum(); // + 64*64;
323
324 _maskMade = true;
325
326 improc::fitsFile<floatT> ff;
327 ff.write( "quadMask.fits", _quadMask );
328}
329
330template <typename floatT>
332{
333 if( !_maskMade )
334 calcMask();
335 return _measurementSize;
336}
337
338template <typename floatT>
339template <typename measurementT, typename wfsImageT>
340void pywfsSlopeReconstructor<floatT>::calcMeasurement( measurementT &slopes, wfsImageT &wfsImage )
341{
342 if( !_maskMade )
343 calcMask();
344
345 imageT _wfsImage;
346
347 if( _binFact > 1 )
348 {
349 std::cout << "rebinning" << "\n";
350 _wfsImage.resize( wfsImage.image.rows() / _binFact, wfsImage.image.cols() / _binFact );
351 imageDownSample( _wfsImage, wfsImage.image );
352 }
353 else
354 {
355 _wfsImage = wfsImage.image;
356 }
357
358 int nsz = _wfsImage.rows();
359
360 int nPix = _quadMask.sum();
361
362 std::vector<int> x( nPix ), y( nPix );
363
364 int k = 0;
365 for( int i = 0; i < _quadMask.rows(); ++i )
366 {
367 for( int j = 0; j < _quadMask.rows(); ++j )
368 {
369 if( _quadMask( i, j ) == 1 )
370 {
371 x[k] = i;
372 y[k] = j;
373 ++k;
374 }
375 }
376 }
377
378 slopes.measurement.resize( 1, 2. * nPix ); // + 64*64); //wfsImage.tipImage.rows()*wfsImage.tipImage.cols());
379
380 floatT I0, I1, I2, I3;
381
382 floatT norm = _wfsImage.sum();
383
384 for( int i = 0; i < nPix; ++i )
385 {
386 I0 = _wfsImage( x[i], y[i] );
387 I1 = _wfsImage( x[i] + 0.5 * nsz, y[i] );
388 I2 = _wfsImage( x[i], y[i] + 0.5 * nsz );
389 I3 = _wfsImage( x[i] + 0.5 * nsz, y[i] + 0.5 * nsz );
390
391 if( norm == 0 )
392 {
393 slopes.measurement( 0, i ) = 0;
394 ;
395 slopes.measurement( 0, i + nPix ) = 0; //
396 }
397 else
398 {
399 slopes.measurement( 0, i ) = ( I0 + I1 - I2 - I3 ) / norm; //(I0+I1+I2+I3);
400 slopes.measurement( 0, i + nPix ) = ( I0 + I2 - I1 - I3 ) / norm; //(I0+I1+I2+I3);
401 }
402 }
403
404 /*
405 for(int i=0; i< wfsImage.tipImage.rows(); ++i)
406 {
407 for(int j=0;j<wfsImage.tipImage.cols(); ++j)
408 {
409 slopes.measurement(0, 2*nPix + i*wfsImage.tipImage.cols() + j) = wfsImage.tipImage(i,j);
410 }
411 }*/
412}
413
414template <typename floatT>
415template <typename measurementT, typename wfsImageT>
416void pywfsSlopeReconstructor<floatT>::reconstruct( measurementT &commandVect, wfsImageT &wfsImage )
417{
418 measurementT slopes;
419
420 calcMeasurement( slopes, wfsImage );
421
422 commandVect.measurement = slopes.measurement.matrix() * _recon.matrix();
423
424 commandVect.iterNo = wfsImage.iterNo;
425}
426
427template <typename floatT>
428void pywfsSlopeReconstructor<floatT>::initializeRMat( int nModes, floatT calamp, int detRows, int detCols )
429{
430
431 _nModes = nModes;
432
433 calAmp( calamp );
434
435 _detRows = detRows;
436 _detCols = detCols;
437
438 _rMat.resize( measurementSize(), nModes );
439 _rMat.setZero();
440
441 _rImages.resize( _detRows, _detCols, _nModes );
442}
443
444template <typename floatT>
445template <typename measurementT>
446void pywfsSlopeReconstructor<floatT>::accumulateRMat( int i, measurementT &measureVec )
447{
448 _rMat.col( i ) = measureVec.measurement.row( 0 );
449}
450
451template <typename floatT>
452template <typename measurementT, typename wfsImageT>
453void pywfsSlopeReconstructor<floatT>::accumulateRMat( int i, measurementT &measureVec, wfsImageT &wfsImage )
454{
455 accumulateRMat( i, measureVec );
456
457 _rImages.image( i ) = wfsImage.image;
458}
459
460template <typename floatT>
462{
463 improc::fitsFile<floatT> ff;
464 improc::fitsHeader head;
465
466 if( _maskType == 1 )
467 {
468 head.append( "MASKFILE", maskFile(), "Name of mask file" );
469 }
470 else
471 {
472 head.append( "MASKRAD", maskRadius(), "Mask radius, in pixels" );
473 head.append( "MASKOBS", maskObscuration(), "Mask fractional central obscuration" );
474 }
475
476 head.append( "DETROWS", _detRows, "WFS detector rows" );
477 head.append( "DETCOLS", _detCols, "WFS detector cols" );
478 head.append( "CALAMP", _calAmp, "DM Calibration amplitude" );
479 head.append( "NMODES", _nModes, "Number of modes included in the response matrix." );
480
481 // ff.write(fname, _rMat.data(), _rMat.rows(), _rMat.cols(), 1, &head);
482 ff.write( fname, _rMat, head );
483}
484
485template <typename floatT>
486void pywfsSlopeReconstructor<floatT>::saveRImages( std::string fname )
487{
488 improc::fitsFile<floatT> ff;
489 improc::fitsHeader head;
490
491 if( _maskType == 1 )
492 {
493 head.append( "MASKFILE", maskFile(), "Name of mask file" );
494 }
495 else
496 {
497 head.append( "MASKRAD", maskRadius(), "Mask radius, in pixels" );
498 head.append( "MASKOBS", maskObscuration(), "Mask fractional central obscuration" );
499 }
500
501 head.append( "DETROWS", _detRows, "WFS detector rows" );
502 head.append( "DETCOLS", _detCols, "WFS detector cols" );
503 head.append( "CALAMP", _calAmp, "DM Calibration amplitude" );
504 head.append( "NMODES", _nModes, "Number of modes included in the response matrix." );
505
506 // ff.write(fname, _rImages.data(), _rImages.rows(), _rImages.cols(), _rImages.planes(), &head);
507 ff.write( fname, _rImages, head );
508}
509
510} // namespace sim
511} // namespace AO
512} // namespace mx
513
514#endif //__pywfsSlopeReconstructor_hpp__
A Pyramid Wavefront Sensor slope reconstructor.
floatT calAmp()
Get the calibration amplitude used in response matrix acquisition (_calAmp)
int _detCols
The size of the WFS image, in columns.
void reconstruct(measurementT &commandVect, wfsImageT &wfsImage)
Reconstruct the wavefront from the input image, producing the modal amplitude vector.
int _detRows
The size of the WFS image, in rows.
int nModes()
Get the number of modes (_nModes)
floatT _maskRadius
0 is centrally obscured circle, 1 is supplied by fits files
std::string _maskFile
The name of the quadrant mask file.
void saveRMat(std::string fname)
Write the accumulated response matrix to disk.
floatT maskObscuration()
Get the quadrant mask central obscuration ratio (_maskObscuration)
Eigen::Array< floatT, -1, -1 > _recon
The reconstructor matrix.
Eigen::Array< floatT, -1, -1 > _quadMask
The quadrant mask.
int _nModes
The number of modes to be reconstructed.
int detCols()
Get the number of detector columns (_detCols)
int _measurementSize
The number of slopes in the measurement.
Eigen::Array< floatT, -1, -1 > imageT
The type of the measurement (i.e. the slope vector)
int measurementSize()
Return the size of the unbinned measurement.
bool _maskMade
Whether or not the mask has been made.
int _binFact
The binning to apply before reconstructing.
floatT _calAmp
The calibration amplitude used for response matrix acquisition.
void calcMeasurement(measurementT &slopes, wfsImageT &wfsImage)
Calculate the slope measurement.
void accumulateRMat(int i, measurementT &measureVec)
Accumalte the next measurement in the response matrix.
Eigen::Array< floatT, -1, -1 > rmatT
The type of the response matrix.
floatT _maskObscuration
The central obscuration of the quadrant mask.
int detRows()
Get the number of detector rows (_detRows)
void loadRecon(std::string fname)
Load the reconstrutor from the specified FITS file.
floatT maskRadius()
Get the quadrant mask radius (_maskRadius)
std::string maskFile()
Get the quadrant mask file name (_maskFile)
void initializeRMat(int nmodes, floatT calamp, int detrows, int detcols)
Initialize the response matrix for acquisition.
void calcMask()
Calculates the quadrant mask.
An image cube with an Eigen-like API.
Definition eigenCube.hpp:30
int circularPupil(arrayT &m, typename arrayT::Scalar eps=0, typename arrayT::Scalar rad=0, typename arrayT::Scalar overscan=0)
Fill in an Eigen-like array with a circular pupil mask.
The mxlib c++ namespace.
Definition mxError.hpp:106