39 mxError(
"noll_nm", MXE_INVALIDARG,
"The Noll index j cannot be less than 1 in the Zernike polynomials" );
43 n = ceil( -1.5 + sqrt( 0.25 + 2 * j ) - 1e-10 );
45 int jrem = j - ( n * ( n + 1 ) / 2 + 1 );
46 m = ( jrem + ( jrem % 2 ) * abs( ( n % 2 ) - 1 ) + fabs( ( jrem % 2 ) - 1 ) * ( n % 2 ) ) *
52int noll_j(
unsigned int n,
int m )
54 if( ( ( n - m ) % 2 ) )
60 if( m >= 0 && ( mn == 2 || mn == 3 ) )
62 else if( m <= 0 && ( mn == 0 || mn == 1 ) )
65 int j = ( n * ( n + 1 ) ) / 2 + abs( m ) + dm;
83template int zernikeRCoeffs<float>( std::vector<float> &c,
int n,
int m );
85template int zernikeRCoeffs<double>( std::vector<double> &c,
int n,
int m );
87template int zernikeRCoeffs<long double>( std::vector<long double> &c,
int n,
int m );
90template int zernikeRCoeffs<__float128>( std::vector<__float128> &c,
int n,
int m );
93template float zernikeR<float, double>(
float rho,
int n,
int m, std::vector<double> &c );
95template double zernikeR<double, double>(
double rho,
int n,
int m, std::vector<double> &c );
97template long double zernikeR<long double, long double>(
long double rho,
int n,
int m, std::vector<long double> &c );
100template __float128 zernikeR<__float128, __float128>( __float128 rho,
int n,
int m, std::vector<__float128> &c );
103template float zernikeR<float, double>(
float rho,
int n,
int m );
105template double zernikeR<double, double>(
double rho,
int n,
int m );
107template long double zernikeR<long double, long double>(
long double rho,
int n,
int m );
110template __float128 zernikeR<__float128, __float128>( __float128 rho,
int n,
int m );
113template float zernike<float, double>(
float rho,
float phi,
int n,
int m, std::vector<double> &c );
115template double zernike<double, double>(
double rho,
double phi,
int n,
int m, std::vector<double> &c );
118zernike<long double, long double>(
long double rho,
long double phi,
int n,
int m, std::vector<long double> &c );
122zernike<__float128, __float128>( __float128 rho, __float128 phi,
int n,
int m, std::vector<__float128> &c );
125template float zernike<float, double>(
float rho,
float phi,
int n,
int m );
127template double zernike<double, double>(
double rho,
double phi,
int n,
int m );
129template long double zernike<long double, long double>(
long double rho,
long double phi,
int n,
int m );
132template __float128 zernike<__float128, __float128>( __float128 rho, __float128 phi,
int n,
int m );
135template float zernike<float, double>(
float rho,
float phi,
int j );
137template double zernike<double, double>(
double rho,
double phi,
int j );
139template long double zernike<long double, long double>(
long double rho,
long double phi,
int j );
142template __float128 zernike<__float128, __float128>( __float128 rho, __float128 phi,
int j );
145template float zernikeQNorm<float>(
float k,
float phi,
int n,
int m );
147template double zernikeQNorm<double>(
double k,
double phi,
int n,
int m );
149template long double zernikeQNorm<long double>(
long double k,
long double phi,
int n,
int m );
152template __float128 zernikeQNorm<__float128>( __float128 k, __float128 phi,
int n,
int m );
T sign(T x)
The sign function.
int noll_j(unsigned n, int m)
Get the Noll index j corresponding to Zernike coefficients n,m.
int nZernRadOrd(unsigned n)
Get the number of Zernikes up to and including a radial order.
int noll_nm(int &n, int &m, int j)
Get the Zernike coefficients n,m corrresponding the Noll index j.
Working with the Zernike polynomials.