mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
zernike.cpp
Go to the documentation of this file.
1/** \file zernike.cpp
2 * \author Jared R. Males (jaredmales@gmail.com)
3 * \brief Working with the Zernike polynomials.
4 *
5 * \ingroup signal_processing_files
6 *
7 */
8
9//***********************************************************************//
10// Copyright 2021 Jared R. Males (jaredmales@gmail.com)
11//
12// This file is part of mxlib.
13//
14// mxlib is free software: you can redistribute it and/or modify
15// it under the terms of the GNU General Public License as published by
16// the Free Software Foundation, either version 3 of the License, or
17// (at your option) any later version.
18//
19// mxlib is distributed in the hope that it will be useful,
20// but WITHOUT ANY WARRANTY; without even the implied warranty of
21// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22// GNU General Public License for more details.
23//
24// You should have received a copy of the GNU General Public License
25// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
26//***********************************************************************//
27
28#include "sigproc/zernike.hpp"
29
30namespace mx
31{
32namespace sigproc
33{
34
35int noll_nm( int &n, int &m, int j )
36{
37 if( j < 1 )
38 {
39 mxError( "noll_nm", MXE_INVALIDARG, "The Noll index j cannot be less than 1 in the Zernike polynomials" );
40 return -1;
41 }
42
43 n = ceil( -1.5 + sqrt( 0.25 + 2 * j ) - 1e-10 ); // 1e-10 is to avoid wrong rounding due to numerical precision
44
45 int jrem = j - ( n * ( n + 1 ) / 2 + 1 );
46 m = ( jrem + ( jrem % 2 ) * abs( ( n % 2 ) - 1 ) + fabs( ( jrem % 2 ) - 1 ) * ( n % 2 ) ) *
47 ( -math::func::sign( ( j % 2 ) - 0.5 ) );
48
49 return 0;
50}
51
52int noll_j( unsigned int n, int m )
53{
54 if( ( ( n - m ) % 2 ) )
55 return -1; // Check if odd
56
57 int mn = n % 4;
58
59 int dm = 0;
60 if( m >= 0 && ( mn == 2 || mn == 3 ) )
61 dm = 1;
62 else if( m <= 0 && ( mn == 0 || mn == 1 ) )
63 dm = 1;
64
65 int j = ( n * ( n + 1 ) ) / 2 + abs( m ) + dm;
66
67 return j;
68}
69
70int nZernRadOrd( unsigned int n )
71{
72 if( n % 2 ) // odd
73 {
74 return noll_j( n, -n );
75 }
76 else
77 {
78 return noll_j( n, n );
79 }
80}
81
82// Explicit instantiations:
83template int zernikeRCoeffs<float>( std::vector<float> &c, int n, int m );
84
85template int zernikeRCoeffs<double>( std::vector<double> &c, int n, int m );
86
87template int zernikeRCoeffs<long double>( std::vector<long double> &c, int n, int m );
88
89#ifdef HASQUAD
90template int zernikeRCoeffs<__float128>( std::vector<__float128> &c, int n, int m );
91#endif
92
93template float zernikeR<float, double>( float rho, int n, int m, std::vector<double> &c );
94
95template double zernikeR<double, double>( double rho, int n, int m, std::vector<double> &c );
96
97template long double zernikeR<long double, long double>( long double rho, int n, int m, std::vector<long double> &c );
98
99#ifdef HASQUAD
100template __float128 zernikeR<__float128, __float128>( __float128 rho, int n, int m, std::vector<__float128> &c );
101#endif
102
103template float zernikeR<float, double>( float rho, int n, int m );
104
105template double zernikeR<double, double>( double rho, int n, int m );
106
107template long double zernikeR<long double, long double>( long double rho, int n, int m );
108
109#ifdef HASQUAD
110template __float128 zernikeR<__float128, __float128>( __float128 rho, int n, int m );
111#endif
112
113template float zernike<float, double>( float rho, float phi, int n, int m, std::vector<double> &c );
114
115template double zernike<double, double>( double rho, double phi, int n, int m, std::vector<double> &c );
116
117template long double
118zernike<long double, long double>( long double rho, long double phi, int n, int m, std::vector<long double> &c );
119
120#ifdef HASQUAD
121template __float128
122zernike<__float128, __float128>( __float128 rho, __float128 phi, int n, int m, std::vector<__float128> &c );
123#endif
124
125template float zernike<float, double>( float rho, float phi, int n, int m );
126
127template double zernike<double, double>( double rho, double phi, int n, int m );
128
129template long double zernike<long double, long double>( long double rho, long double phi, int n, int m );
130
131#ifdef HASQUAD
132template __float128 zernike<__float128, __float128>( __float128 rho, __float128 phi, int n, int m );
133#endif
134
135template float zernike<float, double>( float rho, float phi, int j );
136
137template double zernike<double, double>( double rho, double phi, int j );
138
139template long double zernike<long double, long double>( long double rho, long double phi, int j );
140
141#ifdef HASQUAD
142template __float128 zernike<__float128, __float128>( __float128 rho, __float128 phi, int j );
143#endif
144
145template float zernikeQNorm<float>( float k, float phi, int n, int m );
146
147template double zernikeQNorm<double>( double k, double phi, int n, int m );
148
149template long double zernikeQNorm<long double>( long double k, long double phi, int n, int m );
150
151#ifdef HASQUAD
152template __float128 zernikeQNorm<__float128>( __float128 k, __float128 phi, int n, int m );
153#endif
154
155} // namespace sigproc
156} // namespace mx
T sign(T x)
The sign function.
Definition sign.hpp:29
int noll_j(unsigned n, int m)
Get the Noll index j corresponding to Zernike coefficients n,m.
int nZernRadOrd(unsigned n)
Get the number of Zernikes up to and including a radial order.
int noll_nm(int &n, int &m, int j)
Get the Zernike coefficients n,m corrresponding the Noll index j.
Definition zernike.cpp:35
The mxlib c++ namespace.
Definition mxError.hpp:106
Working with the Zernike polynomials.