mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
array2FitGaussian2D.hpp
Go to the documentation of this file.
1/** \file array2FitGaussian2D.hpp
2 * \author Jared R. Males
3 * \brief Wrapper for a native array to pass to \ref levmarInterface, with 2D Gaussian details.
4 * \ingroup fitting_files
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2020 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef math_fit_array2FitGaussian2D_hpp
28#define math_fit_array2FitGaussian2D_hpp
29
30#include "../../mxError.hpp"
31
32namespace mx
33{
34namespace math
35{
36namespace fit
37{
38
39/// Wrapper for a native array to pass to \ref levmarInterface, with 2D Gaussian details.
40/** Supports fixing G0, G, x0, and y0 independently. The shape and orientation can be fixed, but
41 * for the general form, sigma_x, sigma_y, and theta can only be fixed together.
42 * \ingroup gaussian_peak_fit
43 */
44template <typename realT>
46{
47 realT *data{ nullptr }; ///< Pointer to the array
48 size_t nx{ 0 }; ///< X dimension of the array
49 size_t ny{ 0 }; ///< Y dimension of the array
50
51 realT *weights{ nullptr }; /**< Pointer to the (optional) weight array. Normallt this should be the
52 square root of the vaiance.*/
53
54 realT *mask{ nullptr }; ///< Pointer to the (optional) mask array. Any 0 pixels are excluded from the fit.
55
56 realT m_G0{ 0 };
57 realT m_G{ 0 };
58 realT m_x0{ 0 };
59 realT m_y0{ 0 };
60 realT m_sigma_x{ 0 };
61 realT m_sigma_y{ 0 };
62 realT m_theta{ 0 };
63
64 realT m_a{ 0 };
65 realT m_b{ 0 };
66 realT m_c{ 0 };
67
68 realT m_sigma{ 0 };
69
70 int m_G0_idx{ 0 };
71 int m_G_idx{ 1 };
72 int m_x0_idx{ 2 };
73 int m_y0_idx{ 3 };
74 int m_sigma_x_idx{ 4 }; ///< Index of sigma_x in the parameters. Re-used for a.
75 int m_sigma_y_idx{ 5 }; ///< Index of sigma_y in the parameters. Re-used for b.
76 int m_theta_idx{ 6 }; ///< Index of theta in the parameters. Re-used for c.
77
78 int m_sigma_idx{ 4 }; ///< Index of sigma in the symmetric case
79
80 int m_nparams{ 7 };
81 int m_maxNparams{ 7 };
82
83 void setSymmetric();
84
85 void setGeneral();
86
87 /// Set whether each parameter is fixed.
88 /** Sets the parameter indices appropriately.
89 */
90 void setFixed( bool G0, bool G, bool x0, bool y0, bool sigma_x, bool sigma_y, bool theta );
91
92 realT G0( realT *p );
93
94 void G0( realT *p, realT nG0 );
95
96 realT G( realT *p );
97
98 void G( realT *p, realT nG );
99
100 realT x0( realT *p );
101
102 void x0( realT *p, realT nx0 );
103
104 realT y0( realT *p );
105
106 void y0( realT *p, realT ny0 );
107
108 realT sigma_x( realT *p );
109
110 void sigma_x( realT *p, realT nsigma_x );
111
112 realT sigma_y( realT *p );
113
114 void sigma_y( realT *p, realT nsigma_y );
115
116 realT theta( realT *p );
117
118 void theta( realT *p, realT ntheta );
119
120 realT sigma( realT *p );
121
122 void sigma( realT *p, realT nsigma );
123
124 realT a( realT *p );
125
126 void a( realT *p, realT na );
127
128 realT b( realT *p );
129
130 void b( realT *p, realT nb );
131
132 realT c( realT *p );
133
134 void c( realT *p, realT nc );
135
136 int nparams();
137};
138
139template <typename realT>
140void array2FitGaussian2D<realT>::setSymmetric()
141{
142 m_maxNparams = 5;
143}
144
145template <typename realT>
146void array2FitGaussian2D<realT>::setGeneral()
147{
148 m_maxNparams = 7;
149}
150
151template <typename realT>
152void array2FitGaussian2D<realT>::setFixed( bool G0, bool G, bool x0, bool y0, bool sigma_x, bool sigma_y, bool theta )
153{
154 int idx = 0;
155
156 if( G0 )
157 m_G0_idx = -1;
158 else
159 m_G0_idx = idx++;
160
161 if( G )
162 m_G_idx = -1;
163 else
164 m_G_idx = idx++;
165
166 if( x0 )
167 m_x0_idx = -1;
168 else
169 m_x0_idx = idx++;
170
171 if( y0 )
172 m_y0_idx = -1;
173 else
174 m_y0_idx = idx++;
175
176 if( m_maxNparams == 5 )
177 {
178 if( sigma_x )
179 m_sigma_idx = -1;
180 else
181 m_sigma_idx = idx++;
182 }
183 else if( sigma_x && sigma_y && theta )
184 {
185 m_sigma_x_idx = -1;
186 m_sigma_y_idx = -1;
187 m_theta_idx = -1;
188 }
189 else
190 {
191 if( sigma_x || sigma_y || theta )
192 {
193 mxError(
194 "array2FitGaussian2D::setFixed", MXE_NOTIMPL, "cannot fix sigma_x, sigma_y, and theta separately" );
195 }
196
197 m_sigma_x_idx = idx++;
198 m_sigma_y_idx = idx++;
199 m_theta_idx = idx++;
200 }
201
202 m_nparams = idx;
203}
204
205template <typename realT>
206realT array2FitGaussian2D<realT>::G0( realT *p )
207{
208 if( m_G0_idx < 0 )
209 {
210 return m_G0;
211 }
212 else
213 {
214 return p[m_G0_idx];
215 }
216}
217
218template <typename realT>
219void array2FitGaussian2D<realT>::G0( realT *p, realT nG0 )
220{
221 if( m_G0_idx < 0 )
222 {
223 m_G0 = nG0;
224 }
225 else
226 {
227 p[m_G0_idx] = nG0;
228 }
229}
230
231template <typename realT>
232realT array2FitGaussian2D<realT>::G( realT *p )
233{
234 if( m_G_idx < 0 )
235 {
236 return m_G;
237 }
238 else
239 {
240 return p[m_G_idx];
241 }
242}
243
244template <typename realT>
245void array2FitGaussian2D<realT>::G( realT *p, realT nG )
246{
247 if( m_G_idx < 0 )
248 {
249 m_G = nG;
250 }
251 else
252 {
253 p[m_G_idx] = nG;
254 }
255}
256
257template <typename realT>
258realT array2FitGaussian2D<realT>::x0( realT *p )
259{
260 if( m_x0_idx < 0 )
261 {
262 return m_x0;
263 }
264 else
265 {
266 return p[m_x0_idx];
267 }
268}
269
270template <typename realT>
271void array2FitGaussian2D<realT>::x0( realT *p, realT nx0 )
272{
273 if( m_x0_idx < 0 )
274 {
275 m_x0 = nx0;
276 }
277 else
278 {
279 p[m_x0_idx] = nx0;
280 }
281}
282
283template <typename realT>
284realT array2FitGaussian2D<realT>::y0( realT *p )
285{
286 if( m_y0_idx < 0 )
287 {
288 return m_y0;
289 }
290 else
291 {
292 return p[m_y0_idx];
293 }
294}
295
296template <typename realT>
297void array2FitGaussian2D<realT>::y0( realT *p, realT ny0 )
298{
299 if( m_y0_idx < 0 )
300 {
301 m_y0 = ny0;
302 }
303 else
304 {
305 p[m_y0_idx] = ny0;
306 }
307}
308
309template <typename realT>
310realT array2FitGaussian2D<realT>::sigma_x( realT *p )
311{
312 if( m_sigma_x_idx < 0 )
313 {
314 return m_sigma_x;
315 }
316 else
317 {
318 return p[m_sigma_x_idx];
319 }
320}
321
322template <typename realT>
323void array2FitGaussian2D<realT>::sigma_x( realT *p, realT nsigma_x )
324{
325 if( m_sigma_x_idx < 0 )
326 {
327 m_sigma_x = nsigma_x;
328 }
329 else
330 {
331 p[m_sigma_x_idx] = nsigma_x;
332 }
333}
334
335template <typename realT>
336realT array2FitGaussian2D<realT>::sigma_y( realT *p )
337{
338 if( m_sigma_y_idx < 0 )
339 {
340 return m_sigma_y;
341 }
342 else
343 {
344 return p[m_sigma_y_idx];
345 }
346}
347
348template <typename realT>
349void array2FitGaussian2D<realT>::sigma_y( realT *p, realT nsigma_y )
350{
351 if( m_sigma_y_idx < 0 )
352 {
353 m_sigma_y = nsigma_y;
354 }
355 else
356 {
357 p[m_sigma_y_idx] = nsigma_y;
358 }
359}
360
361template <typename realT>
362realT array2FitGaussian2D<realT>::theta( realT *p )
363{
364 if( m_theta_idx < 0 )
365 {
366 return m_theta;
367 }
368 else
369 {
370 return p[m_theta_idx];
371 }
372}
373
374template <typename realT>
375void array2FitGaussian2D<realT>::theta( realT *p, realT ntheta )
376{
377 if( m_theta_idx < 0 )
378 {
379 m_theta = ntheta;
380 }
381 else
382 {
383 p[m_theta_idx] = ntheta;
384 }
385}
386
387template <typename realT>
388realT array2FitGaussian2D<realT>::sigma( realT *p )
389{
390 if( m_sigma_idx < 0 )
391 {
392 return m_sigma;
393 }
394 else
395 {
396 return p[m_sigma_idx];
397 }
398}
399
400template <typename realT>
401void array2FitGaussian2D<realT>::sigma( realT *p, realT nsigma )
402{
403 if( m_sigma_idx < 0 )
404 {
405 m_sigma = nsigma;
406 }
407 else
408 {
409 p[m_sigma_idx] = nsigma;
410 }
411}
412
413template <typename realT>
414realT array2FitGaussian2D<realT>::a( realT *p )
415{
416 // This aliases sigma_x after param normalization
417 if( m_sigma_x_idx < 0 )
418 {
419 return m_a;
420 }
421 else
422 {
423 return p[m_sigma_x_idx];
424 }
425}
426
427template <typename realT>
428void array2FitGaussian2D<realT>::a( realT *p, realT na )
429{
430 // This aliases sigma_x after param normalization
431 if( m_sigma_x_idx < 0 )
432 {
433 m_a = na;
434 }
435 else
436 {
437 p[m_sigma_x_idx] = na;
438 }
439}
440
441template <typename realT>
442realT array2FitGaussian2D<realT>::b( realT *p )
443{
444 // This aliases sigma_y after param normalization
445 if( m_sigma_y_idx < 0 )
446 {
447 return m_b;
448 }
449 else
450 {
451 return p[m_sigma_y_idx];
452 }
453}
454
455template <typename realT>
456void array2FitGaussian2D<realT>::b( realT *p, realT nb )
457{
458 // This aliases sigma_y after param normalization
459 if( m_sigma_y_idx < 0 )
460 {
461 m_b = nb;
462 }
463 else
464 {
465 p[m_sigma_y_idx] = nb;
466 }
467}
468
469template <typename realT>
470realT array2FitGaussian2D<realT>::c( realT *p )
471{
472 // This aliases theta after param normalization
473 if( m_theta_idx < 0 )
474 {
475 return m_c;
476 }
477 else
478 {
479 return p[m_theta_idx];
480 }
481}
482
483template <typename realT>
484void array2FitGaussian2D<realT>::c( realT *p, realT nc )
485{
486 // This aliases theta after param normalization
487 if( m_theta_idx < 0 )
488 {
489 m_c = nc;
490 }
491 else
492 {
493 p[m_theta_idx] = nc;
494 }
495}
496
497template <typename realT>
498int array2FitGaussian2D<realT>::nparams()
499{
500 return m_nparams;
501}
502
503} // namespace fit
504} // namespace math
505
506} // namespace mx
507
508#endif // math_fit_array2FitGaussian2D_hpp
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
The mxlib c++ namespace.
Definition mxError.hpp:106
Wrapper for a native array to pass to levmarInterface, with 2D Gaussian details.
int m_sigma_x_idx
Index of sigma_x in the parameters. Re-used for a.
size_t ny
Y dimension of the array.
int m_sigma_idx
Index of sigma in the symmetric case.
int m_sigma_y_idx
Index of sigma_y in the parameters. Re-used for b.
void setFixed(bool G0, bool G, bool x0, bool y0, bool sigma_x, bool sigma_y, bool theta)
Set whether each parameter is fixed.
size_t nx
X dimension of the array.
realT * data
Pointer to the array.
int m_theta_idx
Index of theta in the parameters. Re-used for c.
realT * mask
Pointer to the (optional) mask array. Any 0 pixels are excluded from the fit.