mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
autocorrelation.hpp
Go to the documentation of this file.
1/** \file autocorrelation.hpp
2 * \brief Tools for working with autocorrelations
3 *
4 * \author Jared R. Males (jaredmales@gmail.com)
5 *
6 * \ingroup signal_processing_files
7 *
8 */
9
10//***********************************************************************//
11// Copyright 2015, 2016, 2017 Jared R. Males (jaredmales@gmail.com)
12//
13// This file is part of mxlib.
14//
15// mxlib is free software: you can redistribute it and/or modify
16// it under the terms of the GNU General Public License as published by
17// the Free Software Foundation, either version 3 of the License, or
18// (at your option) any later version.
19//
20// mxlib is distributed in the hope that it will be useful,
21// but WITHOUT ANY WARRANTY; without even the implied warranty of
22// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23// GNU General Public License for more details.
24//
25// You should have received a copy of the GNU General Public License
26// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
27//***********************************************************************//
28
29#ifndef autocorrelation_hpp
30#define autocorrelation_hpp
31
32#include "../math/ft/fftT.hpp"
33
34namespace mx
35{
36
37namespace sigproc
38{
39
40/// Calculate the autocorrelation of a time-series
41/**
42 * \tparam T is the real type of the data and autocorrelation.
43 *
44 * \ingroup signal_processing
45 */
46template <typename T>
48 T *ac, ///< [out] is the pre-allocated array of length Nac which will contain the autocorrelation on return
49 size_t Nac, ///< [in] is the length of ac
50 T *sig, ///< [in] is the input time-series (signal)
51 size_t Nsig ///< [in] is the length of the input time-series
52)
53{
54
55 #pragma omp parallel for
56 for( int i = 0; i < Nac; ++i )
57 {
58 ac[i] = 0;
59 for( int j = 0; j < Nsig - i; ++j )
60 {
61 ac[i] += sig[j] * sig[j + i];
62 }
63 }
64
65 T norm = ac[0];
66 for( int i = 0; i < Nac; ++i )
67 {
68 ac[i] /= norm;
69 }
70}
71
72/// Calculate the autocorrelation of a time-series
73/**
74 * \tparam T is the real type of the data and autocorrelation.
75 *
76 * \todo this should probably re-allocate if ac.size() != sig.size(), or at least <
77 *
78 * \ingroup signal_processing
79 */
80template <typename T>
81void autocorrelation( std::vector<T> &ac, ///< [out] will contain the autocorrelation on return. If ac.size()==0 then
82 ///< it is resized to sig.size().
83 std::vector<T> &sig ///< [in] is the input time-series (signal)
84)
85{
86 if( ac.size() == 0 )
87 {
88 ac.resize( sig.size() );
89 }
90
91 autocorrelation( ac.data(), ac.size(), sig.data(), sig.size() );
92}
93
94/// Functor for calculating the autocorrelation given a PSD
95/** Stores the fftT object and related working memory so that
96 * repeated calls do not re-allocate or re-plan the FFT.
97 *
98 * \tparam T is the real type of the PSD and resultig A.C.
99 *
100 * \ingroup signal_processing
101 */
102template <typename T>
104{
105 std::vector<std::complex<T>> fftOut;
106 std::vector<std::complex<T>> fftIn;
107
108 math::ft::fftT<std::complex<T>, std::complex<T>, 1, 0> fft;
109
110 /// Calculate the A.C. as the inverse FFT of the PSD
111 /** This calculates the circular autocorrelation from the PSD.
112 *
113 */
114 void
115 operator()( T *ac, ///< [out] pre-allocated array, on output contains the first Nac points of the autocorrelation
116 size_t Nac, ///< [in] the allocated size of ac.
117 T *psd, ///< [in] the 2-sided FFT storage order PSD
118 size_t Npsd ///< [in] the number of points in the PSD
119 )
120 {
121 fft.plan( Npsd, math::ft::dir::forward );
122
123 fftOut.resize( Npsd );
124 fftIn.resize( Npsd );
125
126 for( size_t i = 0; i < Npsd; ++i )
127 fftIn[i] = psd[i];
128
129 fft( fftOut.data(), fftIn.data() );
130
131 T norm = fftOut[0].real();
132 for( size_t i = 0; i < Npsd && i < Nac; ++i )
133 ac[i] = fftOut[i].real() / norm;
134 }
135
136 /// Calculate the A.C. as the inverse FFT of the PSD
137 /** This calculates the circular autocorrelation from the PSD.
138 *
139 */
140 void operator()( std::vector<T> &ac, ///< [out] On output contains the autocorrelation. If ac.size()==0, it is
141 ///< allocated to psd.size().
142 std::vector<T> &psd ///< [in] the 2-sided FFT storage order PSD
143 )
144 {
145 if( ac.size() == 0 )
146 ac.resize( psd.size() );
147 operator()( ac.data(), ac.size(), psd.data(), psd.size() );
148 }
149};
150
151} // namespace sigproc
152} // namespace mx
153
154#endif // autocorrelation_hpp
@ forward
Specifies the forward transform.
void autocorrelation(T *ac, size_t Nac, T *sig, size_t Nsig)
Calculate the autocorrelation of a time-series.
The mxlib c++ namespace.
Definition mxError.hpp:106
Functor for calculating the autocorrelation given a PSD.
void operator()(std::vector< T > &ac, std::vector< T > &psd)
Calculate the A.C. as the inverse FFT of the PSD.
void operator()(T *ac, size_t Nac, T *psd, size_t Npsd)
Calculate the A.C. as the inverse FFT of the PSD.