|
template<typename T > |
void | mx::sigproc::autocorrelation (T *ac, size_t Nac, T *sig, size_t Nsig) |
| Calculate the autocorrelation of a time-series. More...
|
|
template<typename T > |
void | mx::sigproc::autocorrelation (std::vector< T > &ac, std::vector< T > &sig) |
| Calculate the autocorrelation of a time-series. More...
|
|
template<typename realT > |
int | mx::sigproc::basisMask (improc::eigenCube< realT > &modes, improc::eigenImage< realT > &mask) |
| Mask a basis set. More...
|
|
template<typename realT > |
int | mx::sigproc::basisMeanSub (improc::eigenCube< realT > &modes, improc::eigenImage< realT > &mask, bool postMult=true) |
| Mean-subtract a basis set. More...
|
|
template<typename realT > |
int | mx::sigproc::basisNormalize (improc::eigenCube< realT > &modes, improc::eigenImage< realT > &mask) |
| Normalize a basis set. More...
|
|
template<typename realT > |
int | mx::sigproc::basisAmplitudes (std::vector< realT > &s, improc::eigenImage< realT > &im, improc::eigenCube< realT > &modes, improc::eigenImage< realT > &mask, bool subtract=false, int meanIgnore=0, int N=-1) |
| Measure the amplitudes of a set of basis modes fit to an image. Optionally subtract them. More...
|
|
template<int progress = 0, typename eigenTout , typename eigenTin > |
void | mx::sigproc::gramSchmidt (eigenTout &out, const eigenTin &in) |
| Perform Gram-Schmidt ortogonalization of a basis set, and normalize the result. More...
|
|
template<int progress = 0, typename eigenTout , typename eigenTin , typename eigenTWin > |
void | mx::sigproc::gramSchmidt (eigenTout &out, const eigenTin &in, const eigenTWin &window) |
| Perform Gram-Schmidt ortogonalization of a basis set on a window, and normalize the result. More...
|
|
template<int progress = 0, typename eigenTout , typename eigenTout2 , typename eigenTin > |
void | mx::sigproc::gramSchmidtSpectrum (eigenTout &out, eigenTout2 &spect, const eigenTin &in, typename eigenTin::Scalar normPix=1.0) |
| Perform Gram-Schmidt ortogonalization of a basis set, and normalize the result, while recording the spectrum. More...
|
|
template<typename realT >
Measure the amplitudes of a set of basis modes fit to an image. Optionally subtract them.
Mode subtraction occurs one by one, so subtraction will work with non-orthogonal basis sets.
- Returns
- 0 on success
-
-1 on error
- Template Parameters
-
realT | the floating point type. |
- Parameters
-
[out] | amps | the amplitudes of each mode fit to the image (will be resized). |
| im | [in.out] the image to fit. Is subtracted in place if desired. |
[in] | modes | the modes to fit. |
[in] | mask | the 1/0 mask which defines the domain of the fit. |
[in] | subtract | [optional] if true then the modes are subtracted as they are fit to the image |
[in] | meanIgnore | [optional] if 1 then the mean, or if 2 the median, value is subtracted before fitting. If subtract is false, this value is added back after the subtraction. |
[in] | N | [optional] the number of modes to actually fit. If N < 0 then all modes are fit. |
Definition at line 129 of file basisUtils2D.hpp.
template<int progress = 0, typename eigenTout , typename eigenTin >
void mx::sigproc::gramSchmidt |
( |
eigenTout & |
out, |
|
|
const eigenTin & |
in |
|
) |
| |
Perform Gram-Schmidt ortogonalization of a basis set, and normalize the result.
Performs the stabilized Gram-Schmidt procedure on the input basis set, followed by normalization of the result.
- Parameters
-
out | [out] is the orthonormal basis set constructed from the input |
int | [in] is a basis set, where each column represents one vector. |
- Template Parameters
-
progress | if true, then the loop index is printed for progress reporting |
eigenTout | is the Eigen array type of the desired output |
eigenTin | is the Eigen array type of the input |
Definition at line 52 of file gramSchmidt.hpp.
template<int progress = 0, typename eigenTout , typename eigenTin , typename eigenTWin >
void mx::sigproc::gramSchmidt |
( |
eigenTout & |
out, |
|
|
const eigenTin & |
in, |
|
|
const eigenTWin & |
window |
|
) |
| |
Perform Gram-Schmidt ortogonalization of a basis set on a window, and normalize the result.
Performs the stabilized Gram-Schmidt procedure on the input basis set over a window (or weight function), followed by normalization of the result.
- Parameters
-
out | [out] is the orthonormal basis set constructed from the input |
in | [in] is a basis set, where each column represents one vector. |
window | [in] is the window, or weighting function |
- Template Parameters
-
progress | if true, then the loop index is printed for progress reporting |
eigenTout | is the Eigen array type of the desired output |
eigenTin | is the Eigen array type of the input |
eigenTWin | is the Eigen array type of the window |
Definition at line 98 of file gramSchmidt.hpp.
template<int progress = 0, typename eigenTout , typename eigenTout2 , typename eigenTin >
void mx::sigproc::gramSchmidtSpectrum |
( |
eigenTout & |
out, |
|
|
eigenTout2 & |
spect, |
|
|
const eigenTin & |
in, |
|
|
typename eigenTin::Scalar |
normPix = 1.0 |
|
) |
| |
Perform Gram-Schmidt ortogonalization of a basis set, and normalize the result, while recording the spectrum.
Performs the stabilized Gram-Schmidt procedure on the input basis set, followed by normalization of the result. Also records the spectrum, that is the coefficients of the linear expansion in the orginal basis set for the resultant basis set.
- Template Parameters
-
progress | if true, then the loop index is printed for progress reporting |
eigenTout | is the Eigen array type of the output orthogonalized array |
eigenTout2 | is the Eigen array type of the spectrum |
eigenTin | is the Eigen array type of the input |
- Parameters
-
[out] | out | the orthonormal basis set constructed from the input |
[out] | spect | the spectrum |
[in] | in | a basis set, where each column represents one vector |
[in] | normPix | [optional] area of (usually number of pixels in) the orthogonal region for normalization. |
Definition at line 163 of file gramSchmidt.hpp.