mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
basisUtils2D.hpp
Go to the documentation of this file.
1/** \file basisUtils2D.hpp
2 * \brief Utilities for a working with a 2D basis set
3 *
4 * \author Jared R. Males (jaredmales@gmail.com)
5 *
6 * \ingroup signal_processing_files
7 *
8 */
9
10//***********************************************************************//
11// Copyright 2018 Jared R. Males (jaredmales@gmail.com)
12//
13// This file is part of mxlib.
14//
15// mxlib is free software: you can redistribute it and/or modify
16// it under the terms of the GNU General Public License as published by
17// the Free Software Foundation, either version 3 of the License, or
18// (at your option) any later version.
19//
20// mxlib is distributed in the hope that it will be useful,
21// but WITHOUT ANY WARRANTY; without even the implied warranty of
22// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23// GNU General Public License for more details.
24//
25// You should have received a copy of the GNU General Public License
26// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
27//***********************************************************************//
28
29#ifndef basisUtils_hpp
30#define basisUtils_hpp
31
32#include "../improc/eigenImage.hpp"
33#include "../improc/eigenCube.hpp"
34
35namespace mx
36{
37namespace sigproc
38{
39
40/// Mask a basis set.
41/** Multiplies each mode in a basis set by a mask.
42 *
43 * \returns 0 on success
44 * \returns -1 on error
45 *
46 * \tparam realT a real floating point type.
47 *
48 * \ingroup signal_processing
49 */
50template <typename realT>
51int basisMask( improc::eigenCube<realT> &modes, ///< [in.out] the basis to normalize.
52 improc::eigenImage<realT> &mask ///< [in] 1/0 mask defining the domain of the basis
53)
54{
55 for( int i = 0; i < modes.planes(); ++i )
56 {
57 modes.image( i ) *= mask;
58 }
59
60 return 0;
61}
62
63/// Mean-subtract a basis set.
64/** Subtracts the mean of each mode calculated over a domain defined by a mask.
65 *
66 * \returns 0 on success
67 * \returns -1 on error
68 *
69 * \tparam realT a real floating point type.
70 *
71 * \ingroup signal_processing
72 */
73template <typename realT>
75 improc::eigenCube<realT> &modes, ///< [in.out] the basis to normalize.
76 improc::eigenImage<realT> &mask, ///< [in] 1/0 mask defining the domain of the basis
77 bool postMult = true ///< [in] [optional] if true, then each image is multiplied by the mask after subtraction.
78)
79{
80 realT maskSum = mask.sum();
81 for( int i = 0; i < modes.planes(); ++i )
82 {
83 float mean = ( modes.image( i ) * mask ).sum() / maskSum;
84
85 modes.image( i ) -= mean;
86
87 if( postMult )
88 modes.image( i ) *= mask;
89 }
90
91 return 0;
92}
93
94/// Normalize a basis set.
95/** RMS normalize each mode over a domain defined by a mask.
96 *
97 * \returns 0 on success
98 * \returns -1 on error
99 *
100 * \tparam realT a real floating point type.
101 *
102 * \ingroup signal_processing
103 */
104template <typename realT>
105int basisNormalize( improc::eigenCube<realT> &modes, ///< [in.out] the basis to normalize.
106 improc::eigenImage<realT> &mask ///< [in] 1/0 mask defining the domain of the normalization
107)
108{
109 if( mask.rows() != modes.rows() )
110 {
111 std::cerr << "mx::sigproc::basisUtils2D::basisNormalize: modes and mask have different numbers of rows\n";
112 return -1;
113 }
114
115 if( mask.cols() != modes.cols() )
116 {
117 std::cerr << "mx::sigproc::basisUtils2D::basisNormalize: modes and mask have different numbers of columns\n";
118 return -1;
119 }
120
121 realT psum = mask.sum();
122
123 if( psum <= 0 )
124 {
125 std::cerr << "mx::sigproc::basisUtils2D::basisNormalize: mask sums to <= 0\n";
126 return -1;
127 }
128
129 for( int i = 0; i < modes.planes(); ++i )
130 {
131 float norm = ( modes.image( i ) * mask ).square().sum() / psum;
132
133 modes.image( i ) /= sqrt( norm );
134 }
135
136 return 0;
137}
138
139/// Measure the amplitudes of a set of basis modes fit to an image. Optionally subtract them.
140/** Mode subtraction occurs one by one, so subtraction will work with non-orthogonal basis sets.
141 *
142 * \returns 0 on success
143 * \returns -1 on error
144 *
145 * \tparam realT the floating point type.
146 *
147 * \ingroup signal_processing
148 */
149template <typename realT>
151 std::vector<realT> &amps, ///< [out] the amplitudes of each mode fit to the image (will be resized).
152 improc::eigenImage<realT> &im, ///< [in.out] the image to fit. Is subtracted in place if desired.
153 improc::eigenCube<realT> &modes, ///< [in] the modes to fit.
154 improc::eigenImage<realT> &mask, ///< [in] the 1/0 mask which defines the domain of the fit.
155 bool subtract = false, ///< [in] [optional] if true then the modes are subtracted as they are fit to the image
156 int meanIgnore = 0, ///< [in] [optional] if 1 then the mean, or if 2 the median, value is subtracted before fitting.
157 ///< If subtract is false, this value is added back after the subtraction.
158 int N = -1 ///< [in] [optional] the number of modes to actually fit. If N < 0 then all modes are fit.
159)
160{
161 if( N < 0 )
162 N = modes.planes();
163 amps.resize( N );
164
165 realT apertureNPix = mask.sum();
166
167 realT mean;
168 if( meanIgnore )
169 {
170 if( meanIgnore == 2 )
171 mean = improc::imageMedian( im, &mask );
172 else
173 mean = ( im * mask ).sum() / apertureNPix;
174
175 im -= mean;
176 }
177
178 for( int i = 0; i < N; ++i )
179 {
180 amps[i] = ( im * modes.image( i ) * mask ).sum() / apertureNPix;
181
182 if( subtract )
183 {
184 im -= amps[i] * modes.image( i );
185 }
186 }
187
188 if( meanIgnore && !subtract )
189 {
190 im += mean;
191 }
192
193 return 0;
194}
195
196} // namespace sigproc
197} // namespace mx
198
199#endif // basisUtils_hpp
An image cube with an Eigen-like API.
Definition eigenCube.hpp:30
imageT::Scalar imageMedian(const imageT &mat, const maskT *mask, std::vector< typename imageT::Scalar > *work=0)
Calculate the median of an Eigen-like array.
Eigen::Array< scalarT, -1, -1 > eigenImage
Definition of the eigenImage type, which is an alias for Eigen::Array.
int basisNormalize(improc::eigenCube< realT > &modes, improc::eigenImage< realT > &mask)
Normalize a basis set.
int basisMeanSub(improc::eigenCube< realT > &modes, improc::eigenImage< realT > &mask, bool postMult=true)
Mean-subtract a basis set.
int basisAmplitudes(std::vector< realT > &amps, improc::eigenImage< realT > &im, improc::eigenCube< realT > &modes, improc::eigenImage< realT > &mask, bool subtract=false, int meanIgnore=0, int N=-1)
Measure the amplitudes of a set of basis modes fit to an image. Optionally subtract them.
int basisMask(improc::eigenCube< realT > &modes, improc::eigenImage< realT > &mask)
Mask a basis set.
The mxlib c++ namespace.
Definition mxError.hpp:106