mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
expModGaussian.hpp
Go to the documentation of this file.
1/** \file expModGaussian.hpp
2 * \brief The Exponentially Modified Gaussian distribution.
3 * \ingroup gen_math_files
4 * \author Jared R. Males (jaredmales@gmail.com)
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2023 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef expModGaussian_hpp
28#define expModGaussian_hpp
29
30#include <boost/math/tools/minima.hpp>
31#include <limits>
32
33namespace mx
34{
35namespace math
36{
37namespace func
38{
39
40/// The Exponentially Modified Gaussian at a point.
41/** Calculates the value of the Exponentially Modified Gaussian distribution at a location specified by x.
42 *
43 *
44 * \tparam realT a real floating point type
45 *
46 * \returns the value of the Exponentially Modified Gaussian distribution at x.
47 *
48 * \ingroup gen_math_expModGaussian
49 */
50template <typename realT>
51realT expModGaussian( realT x, ///< [in] the location at which to calculate the distribution
52 realT mu, ///< [in] the mean parameter
53 realT sigma, ///< [in] the standard deviation
54 realT lambda ///< [in] the rate of decay
55)
56{
57 return ( lambda / 2 ) * exp( ( lambda / 2 ) * ( 2 * mu + lambda * sigma * sigma - 2 * x ) ) *
58 std::erfc( ( mu + lambda * sigma * sigma - x ) / ( root_two<realT>() * sigma ) );
59}
60
61/// The Mean of the Exponentially Modified Gaussian.
62/** Calculates the mean of the Exponentially Modified Gaussian distribution.
63 *
64 *
65 * \tparam realT a real floating point type
66 *
67 * \returns the mean of the Exponentially Modified Gaussian.
68 *
69 * \ingroup gen_math_expModGaussian
70 */
71template <typename realT>
72realT expModGaussianMean( realT mu, ///< [in] the mean parameter
73 realT lambda ///< [in] the rate of decay
74)
75{
76 return mu + 1.0 / lambda;
77}
78
79/// The Variance of the Exponentially Modified Gaussian.
80/** Calculates the variance of the Exponentially Modified Gaussian distribution.
81 *
82 *
83 * \tparam realT a real floating point type
84 *
85 * \returns the variance of the Exponentially Modified Gaussian.
86 *
87 * \ingroup gen_math_expModGaussian
88 */
89template <typename realT>
90realT expModGaussianVariance( realT sigma, ///< [in] the standard deviation
91 realT lambda ///< [in] the rate of decay
92)
93{
94 return sigma * sigma + 1.0 / ( lambda * lambda );
95}
96
97template <typename realT>
98struct emgModeFunc
99{
100 realT mu;
101 realT sigma;
102 realT lambda;
103
104 realT operator()( const realT &x )
105 {
106 return -expModGaussian( x, mu, sigma, lambda );
107 }
108};
109
110/// The Mode of the Exponentially Modified Gaussian.
111/** Calculates the mode of the Exponentially Modified Gaussian distribution.
112 * This is done iteratively with Brent's method.
113 *
114 * \tparam realT a real floating point type
115 *
116 * \returns the mode of the Exponentially Modified Gaussian.
117 *
118 * \ingroup gen_math_expModGaussian
119 */
120template <typename realT>
121realT expModGaussianMode( realT mu, ///< [in] the mean parameter
122 realT sigma, ///< [in] the standard deviation
123 realT lambda ///< [in] the rate of decay
124)
125{
126 realT mn = expModGaussianMean( mu, lambda );
127 realT sd = sqrt( expModGaussianVariance( sigma, lambda ) );
128
129 std::cerr << mn << " " << sd << "\n";
130
132 mf.mu = mu;
133 mf.sigma = sigma;
134 mf.lambda = lambda;
135
136 uintmax_t maxit = 1000;
137 try
138 {
139 std::pair<realT, realT> brack;
140 brack = boost::math::tools::brent_find_minima<emgModeFunc<realT>, realT>(
141 mf, mn - 2 * sd, mn + 2 * sd, std::numeric_limits<realT>::digits, maxit );
142 std::cerr << brack.first << " " << brack.second << " " << maxit << "\n";
143
144 return brack.first;
145 }
146 catch( ... )
147 {
148 std::cerr << "expModGaussianMode: No mode found\n";
149 return std::numeric_limits<realT>::quiet_NaN();
150 }
151}
152
153} // namespace func
154} // namespace math
155} // namespace mx
156
157#endif // expModGaussian_hpp
realT expModGaussianVariance(realT sigma, realT lambda)
The Variance of the Exponentially Modified Gaussian.
realT expModGaussian(realT x, realT mu, realT sigma, realT lambda)
The Exponentially Modified Gaussian at a point.
realT expModGaussianMode(realT mu, realT sigma, realT lambda)
The Mode of the Exponentially Modified Gaussian.
realT expModGaussianMean(realT mu, realT lambda)
The Mean of the Exponentially Modified Gaussian.
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
The mxlib c++ namespace.
Definition mxError.hpp:106