mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
fitExpModGaussian.hpp
Go to the documentation of this file.
1/** \file fitExpModGaussian.hpp
2 * \author Jared R. Males
3 * \brief Tools for fitting the GammaDistribution distribution to data.
4 * \ingroup fitting_files
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2023 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef fitExpModGaussian_hpp
28#define fitExpModGaussian_hpp
29
30#include "levmarInterface.hpp"
31#include "../func/expModGaussian.hpp"
32
33namespace mx
34{
35namespace math
36{
37namespace fit
38{
39
40template <typename realT>
41struct array2FitExpModGaussian;
42
43/** \defgroup expModGauss_peak_fit Exponetially Modified Gaussian Distribution
44 * \brief Fitting the Exponetially Modified Gaussian Distribution to data.
45 *
46 * The Exponetially Modified Gaussian Distribution is fit to data.
47 *
48 * \ingroup peak_fit
49 */
50
51/// Class to manage fitting the Exponetially Modified Gaussian Distribution to data via the \ref levmarInterface
52/** In addition to the requirements on fitterT specified by \ref levmarInterface
53 * this class also requires this definition in fitterT
54 * \code
55 * static const int nparams = 3;
56 * \endcode
57 * where the number 3 is replaced by the number of parameters that fitterT expects to fit.
58 *
59 * \tparam fitterT a type meeting the above requirements.
60 *
61 * \ingroup expModGauss_peak_fit
62 *
63 */
64template <typename fitterT>
65class fitExpModGaussian : public levmarInterface<fitterT>
66{
67
68 public:
69 typedef typename fitterT::realT realT;
70
71 static const int nparams = fitterT::nparams;
72
74
75 void initialize()
76 {
77 this->allocate_params( nparams );
78 this->adata = &arr;
79 }
80
82 {
83 initialize();
84 }
85
87 {
88 }
89
90 /// Set the initial guess.
91 void setGuess( realT G0, ///< [in] the location parameter
92 realT mu, ///< [in] the shape parameter
93 realT sigma, ///< [in] the scale parameter
94 realT lambda ///< [in] the denominator or 1/peak-scale
95 )
96 {
97 static_assert( nparams == 4, "fitExpModGaussian: Wrong setGuess called for no location parameter." );
98
99 this->p[3] = G0; // this is p[2] to make it easy to leave out
100 this->p[0] = mu;
101 this->p[1] = sigma;
102 this->p[2] = lambda;
103 }
104
105 /// Set the initial guess.
106 void setGuess( realT mu, ///< [in] the location parameter
107 realT sigma, ///< [in] the shape parameter
108 realT lambda ///< [in] the scale parameter
109 )
110 {
111 static_assert( nparams == 3, "fitExpModGaussian: Wrong setGuess called for no location parameter." );
112
113 this->p[0] = mu; // this is p[2] to make it easy to leave out
114 this->p[1] = sigma;
115 this->p[2] = lambda;
116 }
117
118 void setArray( realT *data, int n )
119 {
120 arr.data = data;
121 arr.n = n;
122
123 this->n = n;
124 }
125
126 void G0( realT nG0 )
127 {
128 arr.G0 = nG0;
129 if( nparams == 4 )
130 {
131 this->p[3] = nG0; // this is p[2] to make it easy to leave out
132 }
133 }
134
135 void mu( realT nmu )
136 {
137 arr.mu = nmu;
138 this->p[0] = nmu;
139 }
140
141 void sigma( realT ns )
142 {
143 arr.sigma = ns;
144 this->p[1] = ns;
145 }
146
147 void lambda( realT nl )
148 {
149 arr.lambda = nl;
150 this->p[2] = nl;
151 }
152
153 int fit()
154 {
156 }
157
158 realT G0()
159 {
160 if( nparams == 4 )
161 {
162 return this->p[3];
163 }
164 else
165 {
166 return 0;
167 }
168 }
169
170 realT mu()
171 {
172 return this->p[0];
173 }
174
175 realT sigma()
176 {
177 return this->p[1];
178 }
179
180 realT lambda()
181 {
182 return this->p[2];
183 }
184};
185
186/// Wrapper for a native array to pass to \ref levmarInterface, with Exponentially Modified Gaussian details.
187/** \ingroup gammaDist_peak_fit
188 */
189template <typename realT>
191{
192 realT *data{ nullptr }; ///< Pointer to the array
193 size_t n{ 0 }; ///< dimension of the array
194
195 realT G0{ 0 }; ///< the location parameter.
196 realT mu{ 0 }; ///< the shape parameter
197 realT sigma{ 0 }; ///< the scale parameter
198 realT lambda{ 0 }; ///< the denominator or 1/peak-scale
199};
200
201///\ref levmarInterface fitter structure for the Exponentially Modified Gaussian with fixed constant level.
202/**
203 *
204 * \ingroup gammaDist_peak_fit
205 *
206 */
207template <typename _realT>
209{
210 typedef _realT realT;
211
212 static const int nparams = 3;
213
214 static void func( realT *p, realT *hx, int m, int n, void *adata )
215 {
217
218 for( int i = 0; i < arr->n; i++ )
219 {
220 hx[i] = func::expModGaussian<realT>( i, p[0], p[1], p[2] ) - arr->data[i];
221 }
222 }
223};
224
225///\ref levmarInterface fitter structure for the Exponentially Modified Gaussian with arbitrary constant level.
226/**
227 *
228 * \ingroup gammaDist_peak_fit
229 *
230 */
231template <typename _realT>
233{
234 typedef _realT realT;
235
236 static const int nparams = 4;
237
238 static void func( realT *p, realT *hx, int m, int n, void *adata )
239 {
241
242 for( int i = 0; i < arr->n; i++ )
243 {
244 hx[i] = p[3] + func::expModGaussian<realT>( i, p[0], p[1], p[2] ) - arr->data[i];
245 }
246 }
247};
248
249} // namespace fit
250} // namespace math
251} // namespace mx
252
253#endif // fitExpModGaussian_hpp
Class to manage fitting the Exponetially Modified Gaussian Distribution to data via the levmarInterfa...
void setGuess(realT mu, realT sigma, realT lambda)
Set the initial guess.
void setGuess(realT G0, realT mu, realT sigma, realT lambda)
Set the initial guess.
A templatized interface to the levmar package.
void allocate_params()
Allocate parameters array based on previous call to nParams.
realT * p
Parameter array. On input is the initial estimates. On output has the estimated solution.
int n
I: measurement vector dimension.
void * adata
Pointer to possibly additional data, passed uninterpreted to func & jacf.
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
A c++ interface to the templatized levmar minimization routines..
The mxlib c++ namespace.
Definition mxError.hpp:106
Wrapper for a native array to pass to levmarInterface, with Exponentially Modified Gaussian details.
realT lambda
the denominator or 1/peak-scale
levmarInterface fitter structure for the Exponentially Modified Gaussian with fixed constant level.
levmarInterface fitter structure for the Exponentially Modified Gaussian with arbitrary constant leve...