mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
fourierModes.hpp
Go to the documentation of this file.
1/** \file fourierModes.hpp
2 * \author Jared R. Males
3 * \brief Functions for generating 2D Fourier modes
4 * \ingroup signal_processing_files
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2015, 2016, 2017 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef fourierModes_hpp
28#define fourierModes_hpp
29
30#include <vector>
31#include <algorithm>
32
33#include "../mxError.hpp"
34
35#include "../math/constants.hpp"
36#include "../math/geo.hpp"
37
38namespace mx
39{
40
41namespace sigproc
42{
43
44/**
45 * \ingroup fourier_basis
46 *
47 * \todo need to handle references and r-values so this works directly with Eigen arrays.
48 *
49 * @{
50 */
51
52/** \def MX_FOURIER_BASIC
53 * \brief Signifies the basic sine/cosine Fourier basis.
54 */
55#define MX_FOURIER_BASIC 0
56
57/** \def MX_FOURIER_MODIFIED
58 * \brief Signifies the modified Fourier basis.
59 */
60#define MX_FOURIER_MODIFIED 1
61
62/// Populate a single cosine mode
63/** Makes a 2D image of the cosine mode:
64 \f[
65 M_c(\vec{q}) = \cos\left( 2\pi\frac{m}{D}u + 2\pi\frac{n}{D}v \right)
66 \f]
67 * where
68 \f[
69 \vec{q} = u \hat{u} + v \hat{v}
70 \f]
71 * and \f$ D \f$ is taken to be the maximum of the number of columns and rows in the image.
72 *
73 * \retval 0 on success
74 *
75 * \tparam typeN is an Eigen-like reference type.
76 */
77template <class typeN>
78int makeFourierModeC( typeN im, ///< [out] is an Eigen-like image
79 typename typeN::Scalar m, ///< [in] specifies the spatial frequency in the u direction
80 typename typeN::Scalar n ///< [in] n specifies the spatial frequency in the v direction
81)
82{
83 typedef typename typeN::Scalar realT;
84
85 int dim1 = im.cols();
86 int dim2 = im.rows();
87
88 realT uc, vc, u, v, D;
89
90 uc = 0.5 * ( dim1 - 1.0 );
91 vc = 0.5 * ( dim2 - 1.0 );
92
93 D = std::max( dim1, dim2 );
94
95 for( int i = 0; i < dim1; ++i )
96 {
97 u = i - uc;
98 for( int j = 0; j < dim2; ++j )
99 {
100 v = j - vc;
101
102 im( i, j ) = cos( math::two_pi<realT>() / D * ( m * u + n * v ) );
103 }
104 }
105
106 return 0;
107}
108
109/// Populate a single sine mode
110/** Makes a 2D image of the cosine mode:
111 \f[
112 M_s(\vec{q}) = \sin\left( 2\pi\frac{m}{D}u + 2\pi\frac{n}{D}v \right)
113 \f]
114 * where
115 \f[
116 \vec{q} = u \hat{u} + v \hat{v}
117 \f]
118 * and \f$ D \f$ is taken to be the maximum of the number of columns and rows in the image.
119 * \param [out] im is an Eigen-like image
120 * \param [in] m specifies the spatial frequency in the u direction
121 * \param [in] n specifies the spatial frequency in the v direction
122 *
123 * \retval 0 on success
124 *
125 * \tparam typeN is an Eigen-like reference type.
126 */
127template <class typeN>
128int makeFourierModeS( typeN im, typename typeN::Scalar m, typename typeN::Scalar n )
129{
130 typedef typename typeN::Scalar realT;
131
132 int dim1 = im.cols();
133 int dim2 = im.rows();
134
135 realT uc, vc, u, v, D;
136
137 uc = 0.5 * ( dim1 - 1.0 );
138 vc = 0.5 * ( dim2 - 1.0 );
139
140 D = std::max( dim1, dim2 );
141
142 for( int i = 0; i < dim1; ++i )
143 {
144 u = i - uc;
145 for( int j = 0; j < dim2; ++j )
146 {
147 v = j - vc;
148
149 im( i, j ) = sin( math::two_pi<realT>() / D * ( m * u + n * v ) );
150 }
151 }
152
153 return 0;
154}
155
156/// Populate a single basic Fourier mode
157/** Makes a 2D image of the basic sine or cosine mode. Calls \ref makeFourierModeC and \ref makeFourierModeS.
158 *
159 * \param [out] im is an Eigen-like image
160 * \param [in] m specifies the spatial frequency in the u direction
161 * \param [in] n specifies the spatial frequency in the v direction
162 * \param [in] p species sine (-1) or cosine (+1)
163 *
164 * \retval 0 on success
165 *
166 * \tparam typeN is an Eigen-like reference type.
167 */
168template <class typeN>
169int makeFourierMode( typeN im, typename typeN::Scalar m, typename typeN::Scalar n, int p )
170{
171 if( p == -1 )
172 return makeFourierModeS( im, m, n );
173
174 if( p == 1 )
175 return makeFourierModeC( im, m, n );
176
177 mxError( "makeFourierMode", MXE_INVALIDARG, "p must be +1 (cosine) or -1 (sine)." );
178
179 return -1;
180}
181
182/// Populate a single modified Fourier mode
183/** Makes a 2D image of the modified fourier mode:
184 \f[
185 M_p(\vec{q}) = \cos\left( 2\pi \frac{m}{D}u + 2\pi\frac{n}{D}v \right) + p \sin\left( 2\pi\frac{m}{D}u +
186 2\pi\frac{n}{D}v \right) \f]
187 * where \f$ p = \pm 1 \f$, \f$ \vec{q} = u \hat{u} + v \hat{v} \f$,
188 * and \f$ D \f$ is taken to be the maximum of the number of columns in the image.
189 *
190 * \param [out] im is an Eigen-like image
191 * \param [in] m specifies the spatial frequency in the u direction
192 * \param [in] n specifies the spatial frequency in the v direction
193 * \param [in] p is +/- 1 specifying which modified Fourier mode
194 *
195 * \retval 0 on success
196 *
197 * \tparam typeN is an Eigen-like reference type.
198 */
199template <class typeN>
201 typeN im, typename typeN::Scalar m, typename typeN::Scalar n, int p, typename typeN::Scalar ang = 0 )
202{
203 typedef typename typeN::Scalar realT;
204
205 if( p != 1 && p != -1 )
206 {
207 mxError( "makeModifiedFourierMode", MXE_INVALIDARG, "p must be +1 or -1." );
208 }
209
210 int dim1 = im.cols();
211 int dim2 = im.rows();
212
213 realT xc, yc, x, y, arg, D;
214
215 xc = 0.5 * ( dim1 - 1.0 );
216 yc = 0.5 * ( dim2 - 1.0 );
217
218 D = std::max( dim1, dim2 );
219
220 realT c_ang, s_ang;
221 if( ang != 0 )
222 {
223 c_ang = cos( math::dtor( ang ) );
224 s_ang = sin( math::dtor( ang ) );
225 }
226
227 for( int i = 0; i < dim1; ++i )
228 {
229
230 for( int j = 0; j < dim2; ++j )
231 {
232 x = i - xc;
233 y = j - yc;
234
235 if( ang != 0 )
236 {
237 realT x0 = x * c_ang - y * s_ang;
238 realT y0 = x * s_ang + y * c_ang;
239
240 x = x0;
241 y = y0;
242 }
243
244 arg = math::two_pi<realT>() / D * ( m * x + n * y );
245
246 im( i, j ) = cos( arg ) + p * sin( arg );
247 }
248 }
249
250 return 0;
251}
252
253/// Populate a single modified Fourier +1 mode
254/** See \ref makeModifiedFourierMode.
255 *
256 * \param [out] im is an Eigen-like image
257 * \param [in] m specifies the spatial frequency in the u direction
258 * \param [in] n specifies the spatial frequency in the v direction
259 *
260 * \tparam typeN is an Eigen-like reference type.
261 */
262template <class typeN>
264 typename typeN::Scalar m,
265 typename typeN::Scalar n,
266 typename typeN::Scalar ang = 0 )
267{
268 return makeModifiedFourierMode( im, m, n, 1, ang );
269}
270
271/// Populate a single modified Fourier -1 mode
272/** See \ref makeModifiedFourierMode.
273 *
274 * \param [out] im is an Eigen-like image
275 * \param [in] m specifies the spatial frequency in the u direction
276 * \param [in] n specifies the spatial frequency in the v direction
277 *
278 * \tparam typeN is an Eigen-like reference type.
279 */
280template <class typeN>
282 typename typeN::Scalar m,
283 typename typeN::Scalar n,
284 typename typeN::Scalar ang = 0 )
285{
286 return makeModifiedFourierMode( im, m, n, -1, ang );
287}
288
289/// Structure to contain the parameters of a Fourier mode.
291{
292 int m; ///< Spatial frequency m index
293 int n; ///< Spatial frequency n index
294 int p; ///< +/- 1 for modified Fourier modes, -1==>sine, +1==>cosine for basic Fourier modes.
295
296 /// Constructor
298 {
299 m = 0;
300 n = 0;
301 p = 0;
302 }
303};
304
305/// Sorting functor for modes according to the Poyner and Veran (2005) standard.
306/** Follows the conventions of Poyneer & Veran (2005) \cite poyneer_and_veran_2005
307 *
308 * \param[in] spf1 is an object of type \ref fourierModeDef to compare with spf2
309 * \param[in] spf2 is an object of type \ref fourierModeDef to compare with spf1
310 *
311 * \returns the result of (spf1 < spf2) according to the above rules.
312 */
314{
315 double fr1 = spf1.m * spf1.m + spf1.n * spf1.n;
316 double fr2 = spf2.m * spf2.m + spf2.n * spf2.n;
317
318 if( fr1 == fr2 )
319 {
320 if( spf1.n == spf2.n )
321 {
322 if( spf1.m == spf2.m )
323 return ( spf1.p < spf2.p );
324 else
325 return ( spf1.m < spf2.m );
326 }
327 return ( spf1.n < spf2.n );
328 }
329
330 // Otherwise sort by lowest absolute value
331 return ( fr1 < fr2 );
332}
333
334/// Generate a Poyneer and Veran spatial frequency grid.
335/** Follows the convention of Poyneer and Veran (2005) \cite poyneer_and_veran_2005
336 * \todo use push_back instead of resize
337 * \param spf
338 * \param N is the linear number of degrees of freedom.
339 */
340int makeFourierModeFreqs_PandV( std::vector<fourierModeDef> &spf, int N )
341{
342 int Nmodes = N * N;
343
344 spf.resize( Nmodes );
345
346 int _k, _l;
347 int modeCount = 0;
348 for( int ll = 0; ll <= N; ++ll )
349 {
350 for( int l = ll, k = 0; l >= 0; --l, ++k )
351 {
352 if( modeCount >= Nmodes )
353 {
354 mxError( "makeFourierModeFreqs_PandV", MXE_SIZEERR, "mode count exceeded expected number of modes" );
355 return -1;
356 }
357
358 if( k == 0 && l > .5 * N )
359 continue;
360
361 if( k > .5 * N && ( l == 0 || l >= N - k ) )
362 continue;
363
364 if( k > 0.5 * N )
365 _k = k - N;
366 else
367 _k = k;
368
369 if( l > 0.5 * N )
370 _l = l - N;
371 else
372 _l = l;
373
374 // There is always a cosine mode
375 spf[modeCount].m = _k;
376 spf[modeCount].n = _l;
377 spf[modeCount].p = 1;
378
379 ++modeCount;
380
381 // Make sure it isn't one of the corners, then populate the sine mode
382 if( !( ( k == 0 && l == 0 ) || ( k == 0.5 * N && l == 0 ) || ( k == 0 && l == 0.5 * N ) ||
383 ( k == 0.5 * N && l == 0.5 * N ) ) )
384 {
385 spf[modeCount].m = _k;
386 spf[modeCount].n = _l;
387 spf[modeCount].p = -1;
388 ++modeCount;
389 }
390 }
391 }
392
393 std::sort( spf.begin(), spf.end(), comp_fourierModeDef_PandV );
394
395 return 0;
396}
397
398/// Sorting functor for modes according to the mx::AO standard.
399/** Given a spatial frequency vector \f$ \vec{k} = k_u \hat{u} + k_v \hat{v} \f$, sorts first by
400 * \f$ | \vec{k} | \f$, then by the angle from the u axis. Results in mode numbers increasing radially
401 * and counter-clockwise from the \f$ u \f$ axis.
402 *
403 * \param[in] spf1 is an object of type \ref fourierModeDef to compare with spf2
404 * \param[in] spf2 is an object of type \ref fourierModeDef to compare with spf1
405 *
406 * \returns the result of (spf1 < spf2) according to the above rules.
407 */
408bool comp_fourierModeDef( const fourierModeDef &spf1, const fourierModeDef &spf2 )
409{
410 double k1 = spf1.m * spf1.m + spf1.n * spf1.n;
411 double k2 = spf2.m * spf2.m + spf2.n * spf2.n;
412
413 if( k1 == k2 )
414 {
415 // Now compare by angle
416 double a1 = atan2( spf1.n, spf1.m );
417 if( a1 < 0 )
418 a1 += math::two_pi<double>();
419
420 double a2 = atan2( spf2.n, spf2.m );
421 if( a2 < 0 )
422 a2 += math::two_pi<double>();
423
424 if( a1 == a2 )
425 return ( spf1.p < spf2.p );
426
427 return ( a1 < a2 );
428 }
429
430 // Otherwise sort by lowest absolute value
431 return ( k1 < k2 );
432}
433
434/// Generate a circular spatial frequency grid.
435/** \todo use push_back instead of resize
436 *
437 * \param spf
438 * \param N is the linear number of degrees of freedom. The number of modes is ((N+1)(N+1) - 1).
439 */
440int makeFourierModeFreqs_Circ( std::vector<fourierModeDef> &spf, int N )
441{
442 int krad;
443 int Nmodes;
444
445 krad = floor( 0.5 * N );
446
447 Nmodes = 0.25 * math::pi<double>() * N * N * 1.1; // The 1.1 is a buffer
448
449 spf.resize( Nmodes );
450
451 int modeCount = 0;
452
453 for( int m = -krad; m <= krad; ++m )
454 {
455 int nmax = sqrt( krad * krad - m * m );
456
457 for( int n = 0; n <= nmax; ++n )
458 {
459 if( n == 0 && m <= 0 )
460 continue;
461
462 for( int p = -1; p <= 1; p += 2 )
463 {
464 if( modeCount >= Nmodes )
465 {
466 mxError( "makeFourierModeFreqs_Circ", MXE_SIZEERR, "mode count exceeded expected number of modes" );
467 return -1;
468 }
469
470 spf[modeCount].m = m;
471 spf[modeCount].n = n;
472 spf[modeCount].p = p;
473 ++modeCount;
474 }
475 }
476 }
477
478 // Erase any extra modes (there will bedue to the buffer).
479 spf.erase( spf.begin() + modeCount, spf.end() );
480
481 // And now sort it
482 std::sort( spf.begin(), spf.end(), comp_fourierModeDef );
483
484 return 0;
485}
486
487/// Calculate the index of a Fourier mode given its (m,n,p) coordinates.
488/** The index increases counter-clockwise from the m axis in squares, with p==-1 being even and p==1 being odd.
489 *
490 * \param [in] m is the m spatial frequency coordinate
491 * \param [in] n is the n spatial frequency coordinage
492 * \param [in] p is the parity, +/-1, for sine or cosine or specifiying the modified Fourier mode.
493 *
494 * \returns the index of the Fourier mode on success
495 * \returns -1 on an error.
496 */
497int fourierModeNumber( int m, int n, int p )
498{
499
500 if( p != -1 && p != 1 )
501 {
502 mxError( "fourierModeCoordinates", MXE_INVALIDARG, "p must +/-1" );
503 return -1;
504 }
505
506 if( m == 0 && n == 0 )
507 {
508 mxError( "fourierModeCoordinates", MXE_INVALIDARG, "piston is ignored" );
509 return -1;
510 }
511
512 int m0 = std::max( abs( m ), abs( n ) );
513
514 int i0 = 2 * ( m0 * m0 - m0 );
515
516 // int di0= 4*m0;
517
518 int di;
519
520 if( m == m0 )
521 {
522 di = n;
523 }
524 else if( m == -m0 )
525 {
526 di = 4 * m0 - n;
527 }
528 else
529 {
530 di = 2 * m0 - m;
531 }
532
533 return 2 * ( i0 + di ) + ( 1 + p ) / 2;
534}
535
536/// Calculate the (m,n,p) coordinates of a Fourier mode given its index.
537/** The index increases counter-clockwise from the m axis in squares, with p==-1 being even and p==1 being odd.
538 *
539 * \returns 0 on success, a negative number otherwise
540 */
542 int &m, ///< [out] is the m spatial frequency coordinate
543 int &n, ///< [out] is the n spatial frequency coordinage
544 int &p, ///< [out] is the parity, +/-1, for sine or cosine or specifiying the modified Fourier mode.
545 int i ) ///< [in] is the mode index.
546{
547 if( i < 0 )
548 {
549 mxError( "fourierModeCoordinates", MXE_INVALIDARG, "i must be >= 0" );
550 m = 0;
551 n = 0;
552 p = 0;
553 return -1; /// \retval -1 if i < 0
554 }
555
556 int ii = ( i ) / 2;
557
558 int m0 = 1;
559
560 while( 2 * ( m0 * m0 - m0 ) <= ii )
561 ++m0;
562 --m0;
563
564 int di = ii - 2 * ( m0 * m0 - m0 );
565
566 if( di <= m0 )
567 {
568 m = m0;
569 n = di;
570 }
571 else if( di <= 3 * m0 )
572 {
573 m = 2 * m0 - di;
574 n = m0;
575 }
576 else
577 {
578 m = -m0;
579 n = 4 * m0 - di;
580 }
581
582 p = -1 + 2 * ( i % 2 );
583
584 return 0;
585}
586
587/// Generate a rectangular spatial frequency grid.
588/**
589 * \param spf is a vector of fourierModeDef structures, which will be resized and populated.
590 * \param N is the linear number of degrees of freedom. The number of modes is ((N+1)(N+1) - 1).
591 */
592int makeFourierModeFreqs_Rect( std::vector<fourierModeDef> &spf, int N )
593{
594 int Ndx = floor( 0.5 * ( N ) );
595
596 int Nmodes = 2 * ( ( 2 * Ndx + 1 ) * ( Ndx + 1 ) - ( Ndx + 1 ) );
597
598 spf.resize( Nmodes );
599
600 int m, n, p;
601
602 for( int i = 0; i < Nmodes; ++i )
603 {
604 fourierModeCoordinates( m, n, p, i );
605
606 spf[i].m = m;
607 spf[i].n = n;
608 spf[i].p = p;
609 }
610
611 return 0;
612}
613
614/// Fill in a cube with a Fourier basis.
615/** Fills the cube with either the basic or modified Fourier basis for the modes specified.
616 *
617 * \param[out] cube will be allocated to hold and will be filled with the modes
618 * \param[in] dim is the linear size of the maps, each is
619 * \param[in] spf is a vector of mode definitions to use for each mode
620 * \param[in] basisType is either MX_FOURIER_MODIFIED or MX_FOURIER_BASIC
621 *
622 * \tparam cubeT is an eigen-like cube, e.g. \ref mx::eigenCube.
623 */
624template <typename cubeT>
626 cubeT &cube, int dim, std::vector<fourierModeDef> spf, int basisType, typename cubeT::Scalar ang = 0 )
627{
628 int Nmodes = spf.size();
629
630 cube.resize( dim, dim, Nmodes );
631
632 for( int j = 0; j < Nmodes; ++j )
633 {
634 if( basisType == MX_FOURIER_MODIFIED )
635 {
636 if( makeModifiedFourierMode( cube.image( j ), spf[j].m, spf[j].n, spf[j].p, ang ) < 0 )
637 return -1;
638 }
639 else
640 {
641 if( makeFourierMode( cube.image( j ), spf[j].m, spf[j].n, spf[j].p ) < 0 )
642 return -1;
643 }
644 }
645
646 return 0;
647}
648
649/// Generate a rectangular modified Fourier basis with the Poyneer and Veran ordering.
650/** Fills the cube with modes generated by \ref makeFourierMode or \ref makeModifiedFourierMode using the mode grid
651 * generated by \ref makeFourierModeFreqs_PandV. This follows the convention of Poyneer and Veran (2005) \cite
652 * poyneer_and_veran_2005 for mode numbering.
653 *
654 * \param[out] cube will be allocated to hold and will be filled with the modes
655 * \param[in] dim is the linear size of the maps, each is
656 * \param[in] N is the linear number of degrees of freedom. The number of modes is ((N+1)(N+1) - 1).
657 * \param[in] basisType is either MX_FOURIER_MODIFIED or MX_FOURIER_BASIC
658 *
659 * \tparam cubeT is an eigen-like cube, e.g. \ref mx::eigenCube.
660 */
661template <typename cubeT>
662int makeFourierBasis_PandV( cubeT &cube, int dim, int N, int basisType )
663{
664 std::vector<fourierModeDef> spf;
665
666 if( makeFourierModeFreqs_PandV( spf, N ) < 0 )
667 {
668 return -1;
669 }
670
671 return fillFourierBasis( cube, dim, spf, basisType );
672}
673
674/// Generate a circular Fourier basis.
675/** Fills the cube with modes generated by \ref makeFourierMode or \ref makeModifiedFourierMode using the mode grid
676 * generated by \ref makeFourierModeFreqs_Circ.
677 *
678 * \param[out] cube will be allocated to hold and will be filled with the modes
679 * \param[in] dim is the linear size of the maps, each is
680 * \param[in] N is the linear number of degrees of freedom. The number of modes is ((N+1)(N+1) - 1).
681 * \param[in] basisType is either MX_FOURIER_MODIFIED or MX_FOURIER_BASIC
682 *
683 * \tparam cubeT is an eigen-like cube, e.g. \ref mx::eigenCube.
684 */
685template <typename cubeT>
686int makeFourierBasis_Circ( cubeT &cube, int dim, int N, int basisType )
687{
688 std::vector<fourierModeDef> spf;
689
690 if( makeFourierModeFreqs_Circ( spf, N ) < 0 )
691 {
692 return -1;
693 }
694
695 return fillFourierBasis( cube, dim, spf, basisType );
696}
697
698/// Generate a rectangular Fourier basis.
699/** Fills the cube with modes generated by \ref makeFourierMode or \ref makeModifiedFourierMode using the mode grid
700 * generated by \ref makeFourierModeFreqs_Rect.
701 *
702 * \param[out] cube will be allocated to hold and will be filled with the modes
703 * \param[in] dim is the linear size of the maps, each is
704 * \param[in] N is the linear number of degrees of freedom. The number of modes is ((N+1)(N+1) - 1).
705 * \param[in] basisType is either MX_FOURIER_MODIFIED or MX_FOURIER_BASIC
706 *
707 * \tparam cubeT is an eigen-like cube, e.g. \ref mx::eigenCube.
708 */
709template <typename cubeT>
710int makeFourierBasis_Rect( cubeT &cube, int dim, int N, int basisType, typename cubeT::Scalar ang = 0 )
711{
712 std::vector<fourierModeDef> spf;
713
714 if( makeFourierModeFreqs_Rect( spf, N ) < 0 )
715 {
716 return -1;
717 }
718
719 return fillFourierBasis( cube, dim, spf, basisType, ang );
720}
721
722///@}
723
724} // namespace sigproc
725} // namespace mx
726
727#endif // fourierModes_hpp
int makeFourierModeS(typeN im, typename typeN::Scalar m, typename typeN::Scalar n)
Populate a single sine mode.
int makeFourierBasis_Rect(cubeT &cube, int dim, int N, int basisType, typename cubeT::Scalar ang=0)
Generate a rectangular Fourier basis.
int fourierModeCoordinates(int &m, int &n, int &p, int i)
Calculate the (m,n,p) coordinates of a Fourier mode given its index.
int makeModifiedFourierModeP(typeN im, typename typeN::Scalar m, typename typeN::Scalar n, typename typeN::Scalar ang=0)
Populate a single modified Fourier +1 mode.
int makeFourierBasis_Circ(cubeT &cube, int dim, int N, int basisType)
Generate a circular Fourier basis.
int makeModifiedFourierModeM(typeN im, typename typeN::Scalar m, typename typeN::Scalar n, typename typeN::Scalar ang=0)
Populate a single modified Fourier -1 mode.
int makeFourierModeFreqs_Rect(std::vector< fourierModeDef > &spf, int N)
Generate a rectangular spatial frequency grid.
int makeFourierBasis_PandV(cubeT &cube, int dim, int N, int basisType)
Generate a rectangular modified Fourier basis with the Poyneer and Veran ordering.
int makeModifiedFourierMode(typeN im, typename typeN::Scalar m, typename typeN::Scalar n, int p, typename typeN::Scalar ang=0)
Populate a single modified Fourier mode.
bool comp_fourierModeDef(const fourierModeDef &spf1, const fourierModeDef &spf2)
Sorting functor for modes according to the mx::AO standard.
int fourierModeNumber(int m, int n, int p)
Calculate the index of a Fourier mode given its (m,n,p) coordinates.
int fillFourierBasis(cubeT &cube, int dim, std::vector< fourierModeDef > spf, int basisType, typename cubeT::Scalar ang=0)
Fill in a cube with a Fourier basis.
int makeFourierModeFreqs_Circ(std::vector< fourierModeDef > &spf, int N)
Generate a circular spatial frequency grid.
int makeFourierMode(typeN im, typename typeN::Scalar m, typename typeN::Scalar n, int p)
Populate a single basic Fourier mode.
int makeFourierModeFreqs_PandV(std::vector< fourierModeDef > &spf, int N)
Generate a Poyneer and Veran spatial frequency grid.
int makeFourierModeC(typeN im, typename typeN::Scalar m, typename typeN::Scalar n)
Populate a single cosine mode.
bool comp_fourierModeDef_PandV(const fourierModeDef &spf1, const fourierModeDef &spf2)
Sorting functor for modes according to the Poyner and Veran (2005) standard.
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
realT dtor(realT q)
Convert from degrees to radians.
Definition geo.hpp:138
The mxlib c++ namespace.
Definition mxError.hpp:106
Structure to contain the parameters of a Fourier mode.
int m
Spatial frequency m index.
int n
Spatial frequency n index.
int p
+/- 1 for modified Fourier modes, -1==>sine, +1==>cosine for basic Fourier modes.