mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
geo.hpp
Go to the documentation of this file.
1/** \file geo.hpp
2 * \author Jared R. Males
3 * \brief Utilities for working with angles
4 * \ingroup gen_math_files
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2015, 2016, 2017, 2018 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef math_geo_hpp
28#define math_geo_hpp
29
30#include <vector>
31
32#include <cmath>
33
34#include "constants.hpp"
35
36namespace mx
37{
38namespace math
39{
40
41/// Calculate the semi-latus rectum of a <a href="http://en.wikipedia.org/wiki/Conic_section">conic section</a>
42/**
43 * \ingroup geo
44 */
45#define semilatrect( a, e ) \
46 ( e == 0.0 ? a : ( e == 1.0 ? 2. * a : ( e < 1. ? a * ( 1 - e * e ) : a * ( e * e - 1 ) ) ) )
47
48/// Calculate the focal parameter of a <a href="http://en.wikipedia.org/wiki/Conic_section">conic section</a>
49/**
50 * \ingroup geo
51 */
52#define focus( a, e ) \
53 ( e == 0.0 ? 1e34 : ( e == 1.0 ? 2. * a : ( e < 1. ? a * ( 1 - e * e ) / e : a * ( e * e - 1 ) / e ) ) )
54
55/// Calculate the semi-major axis of a <a href="http://en.wikipedia.org/wiki/Conic_section">conic section</a>, given the
56/// focal parameter and the eccentricity
57/**
58 * \ingroup geo
59 */
60#define semimaj( p, e ) ( e == 1.0 ? 1e34 : ( e < 1 ? p * e / ( 1 - e * e ) : p * e / ( e * e - 1 ) ) )
61
62/// Calculate the eccentricity of a <a href="http://en.wikipedia.org/wiki/Conic_section">conic section</a> given the
63/// semi-major axis and the focal parameter
64/**
65 * \ingroup geo
66 */
67#define eccent( a, p ) \
68 ( a == 0.0 ? 1e34 \
69 : ( p >= 1e9 ? 0.0 \
70 : ( p > 0 ? ( -p / ( 2 * a ) + 0.5 * std::sqrt( p * p / ( a * a ) + 4 ) ) \
71 : ( p / ( 2 * a ) + 0.5 * std::sqrt( p * p / ( a * a ) + 4 ) ) ) ) )
72
73/// Type specifying angles in radians
74/**
75 * \test Verify compilation and calculations of math::angleDiff \ref tests_math_geo_angleDiff "[test doc]"
76 */
77struct radians;
78
79/// Type specifying angles in degrees
80/**
81 * \test Verify compilation and calculations of math::angleDiff \ref tests_math_geo_angleDiff "[test doc]"
82 */
83struct degrees;
84
85/// Type holding constants related to angle calculations in degrees
86template <typename degrad, typename realT>
87struct degradT;
88
89/// Type holding constants related to angle calculations in degrees
90/**
91 * \test Verify compilation and calculations of math::angleDiff \ref tests_math_geo_angleDiff "[test doc]"
92 */
93template <typename _realT>
94struct degradT<degrees, _realT>
95{
96 typedef _realT realT;
97 static constexpr realT scale =
98 static_cast<realT>( 180 ) / pi<realT>(); // Scale factor to convert from radians to this unit.
99 static constexpr realT degrees = 1;
100 static constexpr realT radians = pi<realT>() / static_cast<realT>( 180 );
101 static constexpr realT full = static_cast<realT>( 360.0 );
102 static constexpr realT half = static_cast<realT>( 180.0 );
103};
104
105template <typename realT>
107
108/// Type holding constants related to angle calculations in radians
109/**
110 * \test Verify compilation and calculations of math::angleDiff \ref tests_math_geo_angleDiff "[test doc]"
111 */
112template <typename _realT>
113struct degradT<radians, _realT>
114{
115 typedef _realT realT;
116 static constexpr realT scale = 1; // Scale factor to convert from radians to this unit.
117 static constexpr realT degrees = static_cast<realT>( 180 ) / pi<realT>();
118 static constexpr realT radians = 1;
119 static constexpr realT full = two_pi<realT>();
120 static constexpr realT half = pi<realT>();
121};
122
123template <typename realT>
125
126/// Convert from degrees to radians
127/**
128 *
129 * \param q is the angle to convert
130 *
131 * \return the angle q converted to radians
132 *
133 * \test Verify compilation and calculations of math::angleDiff \ref tests_math_geo_angleDiff "[test doc]"
134 *
135 * \ingroup geo
136 */
137template <typename realT>
138realT dtor( realT q )
139{
141}
142
143/// Convert from radians to degrees
144/**
145 *
146 * \param q is the angle to convert
147 *
148 * \return the angle q converted to degrees
149 *
150 * \ingroup geo
151 */
152template <typename realT>
153realT rtod( realT q )
154{
156}
157
158/// Calculate the angle modulo full-circle, normalizing to a positive value.
159/** The output will be betweeen 0 and 360 (or 0 and 2pi).
160 *
161 * \returns the value of q normalized to 0 <= q < 360[2pi]
162 *
163 * \tparam degrad controls whether this is in degrees (0, default) or radians (1)
164 * \tparam realT is the type in which to do arithmetic
165 *
166 * \ingroup geo
167 */
168template <class angleT>
169typename angleT::realT angleMod( typename angleT::realT q /**< [in] the angle */ )
170{
171 static_assert( std::is_floating_point<typename angleT::realT>::value,
172 "angleMod: angleT::realT must be floating point" );
173
174 q = fmod( q, angleT::full );
175
176 if( q < 0 )
177 q += angleT::full;
178
179 return q;
180}
181
182/// Calculate the difference between two angles, correctly across 0/360.
183/** Calculates \f$ dq = q2- q1 \f$, but accounts for crossing 0/360. This implies
184 * that \f$ dq \le 180 \f$.
185 *
186 *
187 * \returns the difference of q2 and q1
188 *
189 * \tparam angleT controls whether this is in degrees (0, default) or radians (1)
190 * \tparam realT is the type in which to do arithmetic
191 *
192 * \test Verify compilation and calculations of math::angleDiff \ref tests_math_geo_angleDiff "[test doc]"
193 *
194 * \ingroup geo
195 */
196template <class angleT>
197typename angleT::realT angleDiff( typename angleT::realT q1, ///< [in] angle to subtract from q2.
198 typename angleT::realT q2 ///< [in] angle to subtract q1 from.
199)
200{
201 static_assert( std::is_floating_point<typename angleT::realT>::value, "angleDiff: realT must be floating point" );
202
203 typename angleT::realT dq = q2 - q1;
204
205 if( std::abs( dq ) > angleT::half )
206 {
207 if( dq < 0 )
208 {
209 dq = dq + static_cast<typename angleT::realT>( 2 ) * angleT::half;
210 }
211 else
212 {
213 dq = dq - static_cast<typename angleT::realT>( 2 ) * angleT::half;
214 }
215 }
216
217 return dq;
218}
219
220/// Calculate the mean of a set of angles, correctly across 0/360.
221/** Calculates the mean by decomposing into vectors and averaging the components. This accounts for crossing 0/360.
222 *
223 * \returns the mean angle
224 *
225 * \tparam angleT is the angle type, either radians<realT> or degrees<realT>. angleT::realT is the type in which to do
226 * arithmetic.
227 *
228 * \ingroup geo
229 */
230template <class angleT>
231typename angleT::realT
232angleMean( const std::vector<typename angleT::realT> &q /**< [in] vector of angles to average.*/ )
233{
234 static_assert( std::is_floating_point<typename angleT::realT>::value, "angleMean: realT must be floating point" );
235
236 typename angleT::realT s = 0;
237 typename angleT::realT c = 0;
238
239 for( int i = 0; i < q.size(); ++i )
240 {
241 s += sin( q[i] / angleT::scale );
242 c += cos( q[i] / angleT::scale );
243 }
244
245 s /= q.size();
246 c /= q.size();
247
248 return atan2( s, c ) * angleT::scale;
249}
250
251/// Make a vector of angles continuous, fixing the 0/360 crossing.
252/** The vector is modified so it is continuous.
253 *
254 *
255 * \tparam degrad controls whether angles are degrees (false) or radians (true)
256 * \tparam realT is the type in which to do arithmetic
257 *
258 * \ingroup geo
259 */
260template <int degrad = 0, typename realT>
261int continueAngles( std::vector<realT> &angles, ///< [in] the vector of angles
262 realT threshold = 0.75 ///< [in] [optional] the fraction of a full circle at which to consider a
263 ///< difference in angle discontinuous.
264)
265{
266 realT full;
267
268 if( degrad )
269 full = two_pi<realT>();
270 else
271 full = static_cast<realT>( 360 );
272
273 threshold *= full;
274
275 realT adj = 0;
276
277 if( fabs( angles[1] - angles[0] ) > threshold )
278 {
279 if( angles[1] > angles[0] )
280 adj = -full;
281 else
282 adj = full;
283
284 angles[1] += adj;
285 }
286
287 if( angles.size() == 2 )
288 return 0;
289
290 for( int i = 2; i < angles.size(); ++i )
291 {
292 angles[i] += adj;
293
294 if( fabs( angles[i] - angles[i - 1] ) > threshold )
295 {
296 if( angles[i] > angles[i - 1] )
297 adj += -full;
298 else
299 adj += full;
300
301 angles[i] += adj;
302 }
303 }
304
305 return 0;
306}
307
308/// Rotate a point about the origin.
309/** The rotation is counter-clockwise for positive angles.
310 *
311 * \tparam realT a real floating point type
312 *
313 * \ingroup geo
314 */
315template <typename realT>
316void rotatePoint( realT &x0, ///< [in.out] the x-coordinate of the point to rotate. On exit contains the rotated value.
317 realT &y0, ///< [in.out] the y-coordinate of the point to rotate. On exit contains the rotated value.
318 realT angle ///< [in] the angle by which to rotate [radians]
319)
320{
321 realT x1;
322 realT y1;
323
324 realT cq = cos( angle );
325 realT sq = sin( angle );
326
327 x1 = x0 * cq - y0 * sq;
328 y1 = x0 * sq + y0 * cq;
329
330 x0 = x1;
331 y0 = y1;
332}
333
334} // namespace math
335} // namespace mx
336
337#endif // math_geo_hpp
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
int continueAngles(std::vector< realT > &angles, realT threshold=0.75)
Make a vector of angles continuous, fixing the 0/360 crossing.
Definition geo.hpp:261
angleT::realT angleDiff(typename angleT::realT q1, typename angleT::realT q2)
Calculate the difference between two angles, correctly across 0/360.
Definition geo.hpp:197
angleT::realT angleMod(typename angleT::realT q)
Calculate the angle modulo full-circle, normalizing to a positive value.
Definition geo.hpp:169
realT rtod(realT q)
Convert from radians to degrees.
Definition geo.hpp:153
angleT::realT angleMean(const std::vector< typename angleT::realT > &q)
Calculate the mean of a set of angles, correctly across 0/360.
Definition geo.hpp:232
realT dtor(realT q)
Convert from degrees to radians.
Definition geo.hpp:138
void rotatePoint(realT &x0, realT &y0, realT angle)
Rotate a point about the origin.
Definition geo.hpp:316
The mxlib c++ namespace.
Definition mxError.hpp:106
Type holding constants related to angle calculations in degrees.
Definition geo.hpp:87