mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
gaussian.hpp
Go to the documentation of this file.
1/** \file gaussian.hpp
2 * \author Jared R. Males
3 * \brief Declarations for utilities related to the Gaussian function.
4 * \ingroup gen_math_files
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2015, 2016, 2017, 2018, 2019, 2020 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef gaussian_hpp
28#define gaussian_hpp
29
30#include <cmath>
31
32namespace mx
33{
34namespace math
35{
36namespace func
37{
38
39/// Constant to convert between the Gaussian width parameter and FWHM
40/** Used for
41 *
42 * \f$ FWHM = 2\sqrt{2\log2}\sigma \f$
43 *
44 * This was calculated in long double precision.
45 *
46 * \ingroup gen_math_gaussians
47 */
48template <typename floatT>
49constexpr floatT twosqrt2log2()
50{
51 return static_cast<floatT>( 2.3548200450309493820231386529193992754947713787716 );
52}
53
54/// Convert from FWHM to the Gaussian width parameter
55/** Performs the conversion:
56 *
57 * \f$ \sigma = 2\sqrt{2\log2}FWHM \f$
58 *
59 * \returns the converted value of the Gaussian width parameter
60 *
61 * \ingroup gen_math_gaussians
62 */
63template <typename floatT>
64floatT fwhm2sigma( floatT fw /**< [in] the full-width at half maximum */ )
65{
66 return fw / twosqrt2log2<floatT>();
67}
68
69/// Convert from Gaussian width parameter to FWHM
70/** Performs the conversion:
71 *
72 * \f$ FWHM = 2\sqrt{2\log2}\sigma \f$
73 *
74 * \returns the converted value of the full-width at half maximum
75 *
76 * \ingroup gen_math_gaussians
77 */
78template <typename floatT>
79floatT sigma2fwhm( floatT sig /**< [in] the Gaussian width parameter */ )
80{
81 return sig * twosqrt2log2<floatT>();
82}
83
84/// Find value at position (x) of the 1D arbitrarily-centered symmetric Gaussian
85/**
86 * Computes:
87 * \f$ G(x) = G_0 + G\exp[-(0.5/\sigma^2)((x-x_0)^2)]\f$
88 *
89 *
90 * \returns the value of the 1D arbitrarily-centered symmetric Gaussian at (x)
91 *
92 * \tparam realT is the type to use for arithmetic
93 *
94 * \ingroup gen_math_gaussians
95 *
96 *
97 */
98template <typename realT>
99realT gaussian( const realT x, ///< [in] is the x-position at which to evaluate the Gaussian
100 const realT G0, ///< [in] is the constant to add to the Gaussian
101 const realT G, ///< [in] is the scaling factor (peak height = G-G0)
102 const realT x0, ///< [in] is the x-coordinate of the center
103 const realT sigma ///< [in] is the width of the Gaussian.
104)
105{
106 return G0 + G * exp( -( static_cast<realT>( 0.5 ) / ( sigma * sigma ) * ( ( ( x - x0 ) * ( x - x0 ) ) ) ) );
107}
108
109/// Find value at position (x,y) of the 2D arbitrarily-centered symmetric Gaussian
110/**
111 * Computes:
112 * \f[
113 f(x,y) = G_0 + G \exp[-(0.5/\sigma^2)((x-x_0)^2+(y-y_0)^2)]
114 * \f]
115 *
116 * \returns the value of the 2D arbitrarily-centered symmetric Gaussian at (x,y)
117 *
118 * \tparam realT is the type to use for arithmetic
119 *
120 * \ingroup gen_math_gaussians
121 *
122 * \test Scenario: Verify direction and accuracy of various image shifts \ref tests_improc_imageTransforms_imageShift
123 "[test doc]"
124 *
125 */
126template <typename realT>
127realT gaussian2D( const realT x, ///< [in] the x-position at which to evaluate the Gaussian
128 const realT y, ///< [in] the y-positoin at which to evaluate the Gaussian
129 const realT G0, ///< [in] the constant to add to the Gaussian
130 const realT G, ///< [in] the scaling factor (peak height is G-G0)
131 const realT x0, ///< [in] the x-coordinate of the center
132 const realT y0, ///< [in] the y-coordinate of the center
133 const realT sigma ///< [in] the width of the Gaussian.
134)
135{
136 return G0 +
137 G * std::exp( -( 0.5 / ( sigma * sigma ) * ( ( ( x - x0 ) * ( x - x0 ) ) + ( ( y - y0 ) * ( y - y0 ) ) ) ) );
138}
139
140/// Fill in an array with the 2D arbitrarily-centered symmetric Gaussian
141/**
142 * At each pixel (x,y) of the array this computes:
143 *
144 * \f$ f(x,y) = G_0 + G\exp[-(0.5/\sigma^2)((x-x_0)^2+(y-y_0)^2)] \f$
145 *
146 * \tparam realT is the type to use for arithmetic
147 *
148 * \ingroup gen_math_gaussians
149 */
150template <typename realT>
151void gaussian2D( realT *arr, ///< [out] is the allocated array to fill in
152 size_t nx, ///< [in] is the size of the x dimension of the array
153 size_t ny, ///< [in] is the size of the y dimension of the array
154 const realT G0, ///< [in] is the constant to add to the Gaussian
155 const realT G, ///< [in] is the scaling factor (peak height = G-G0)
156 const realT x0, ///< [in] is the x-coordinate of the center
157 const realT y0, ///< [in] is the y-coordinate of the center
158 const realT sigma ///< [in] is the third rotation and scaling factor
159)
160{
161 size_t idx;
162
163 for( size_t j = 0; j < ny; ++j )
164 {
165 for( size_t i = 0; i < nx; ++i )
166 {
167 idx = i + j * nx;
168
169 arr[idx] = gaussian2D( (realT)i, (realT)j, G0, G, x0, y0, sigma );
170 }
171 }
172}
173
174/// Find value at position (x,y) of the 2D general elliptical Gaussian
175/**
176 * Computes:
177 *
178 * \f$ f(x,y) = G_0 + G\exp [-0.5( a(x-x_0)^2 + b(x-x_0)(y-y_0) + c(y-y_0)^2 ]\f$
179 *
180 * where, for a counter-clockwise rotation \f$ \theta \f$, we have
181 *
182 * \f$ a = \frac{\cos^2 \theta}{\sigma_x^2} + \frac{\sin^2\theta}{\sigma_y^2}\f$
183 *
184 * \f$ b = \frac{\sin 2\theta}{2} \left(\frac{1}{\sigma_x^2} - \frac{1}{\sigma_y^2} \right)\f$
185 *
186 * \f$ c = \frac{\sin^2 \theta}{\sigma_x^2} + \frac{\cos^2\theta}{\sigma_y^2}\f$
187 *
188 * In this version the parameters are specified directly as (a,b,c), in particular avoiding the trig function calls.
189 * This should be much more efficient, and so this version should be used inside fitting routines, etc. However
190 * note that the matrix {a b}{b c} must be <a
191 * href="http://mathworld.wolfram.com/PositiveDefiniteMatrix.html">positive-definite</a> otherwise infinities can result
192 * from the argument of the exponent being positive.
193 *
194 * The functions gaussian2D_gen2rot() and gaussian2D_rot2gen() provide conversions from
195 * (a,b,c) to (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$) and back. The function gaussian2D_ang() is a
196 * wrapper for this function, which instead accepts (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$) as inputs.
197 *
198 * \returns the value of the 2D elliptical Gaussian at (x,y)
199 *
200 * \tparam realT is the type to use for arithmetic
201 *
202 * \ingroup gen_math_gaussians
203 */
204template <typename realT>
205realT gaussian2D( const realT x, ///< [in] the x-position at which to evaluate the Gaussian
206 const realT y, ///< [in] the y-positoin at which to evaluate the Gaussian
207 const realT G0, ///< [in] the constant to add to the Gaussian
208 const realT G, ///< [in] the scaling factor (peak = G-G0)
209 const realT x0, ///< [in] the x-coordinate of the center
210 const realT y0, ///< [in] the y-coordinate of the center
211 const realT a, ///< [in] the first rotation and scaling factor
212 const realT b, ///< [in] the second rotation and scaling factor
213 const realT c ///< [in] the third rotation and scaling factor
214)
215{
216 realT dx = x - x0;
217 realT dy = y - y0;
218
219 return G0 + G * std::exp( -0.5 * ( a * dx * dx + 2. * b * dx * dy + c * dy * dy ) );
220}
221
222/// Convert from (a,b,c) to (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$) for the elliptical Gaussian.
223/** The general 2D elliptical Gaussian
224 *
225 * \f$ f(x,y) = G_0 + G\exp [-0.5( a(x-x_0)^2 + b(x-x_0)(y-y_0) + c(y-y_0)^2 ]\f$
226 *
227 * can be expressed in terms of widths and a rotation angle using:
228 *
229 * \f$ a = \frac{\cos^2 \theta}{\sigma_x^2} + \frac{\sin^2\theta}{\sigma_y^2}\f$
230 *
231 * \f$ b = \frac{\sin 2\theta}{2} \left(\frac{1}{\sigma_x^2} - \frac{1}{\sigma_y^2} \right)\f$
232 *
233 * \f$ c = \frac{\sin^2 \theta}{\sigma_x^2} + \frac{\cos^2\theta}{\sigma_y^2}\f$
234 *
235 * where \f$ \theta \f$ specifies a counter-clockwise rotation.
236 *
237 * This function calculates (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$) from inputs (a,b,c). It adopts
238 * the convention that the long axis of the ellipse is \f$\sigma_x\f$, and \f$\theta\f$ is chosen
239 * appropriately. Note that \f$-\frac{\pi}{2} < \theta < \frac{\pi}{2}\f$.
240 *
241 * \tparam realT is the type to use for arithmetic
242 *
243 * \ingroup gen_math_gaussians
244 */
245template <typename realT>
246void gaussian2D_gen2rot( realT &sigma_x, ///< [out] the width parameter in the rotated x-direction
247 realT &sigma_y, ///< [out] the width parameter in the rotated y-direction
248 realT &theta, ///< [out] the c.c.w rotation
249 const realT a, ///< [in] the first rotation and scaling parameter
250 const realT b, ///< [in] the second rotation and scaling parameter
251 const realT c ///< [in] the the third rotation and scaling parameter
252)
253{
254 realT x1, x2, s, s2, theta0, theta1;
255
256 realT arg = a * a - 2 * a * c + 4 * b * b + c * c;
257 if( arg < 0 )
258 {
259 x2 = 0.5 * ( a + c );
260 x1 = x2;
261 }
262 else
263 {
264 // There are two roots, one is 1/sigma_x^2 and one is 1/sigma_y^2
265 x2 = 0.5 * ( a + c ) + 0.5 * sqrt( arg );
266 x1 = 0.5 * ( a + c ) - 0.5 * sqrt( arg );
267 }
268
269 // Our convention is that the larger width is sigma_x
270 sigma_x = sqrt( 1. / x1 );
271 sigma_y = sqrt( 1. / x2 );
272
273 //----------------------------------------------------------------------------//
274 // Choosing theta:
275 // There is an ambiguity in theta and which direction (x,y) is the long axis
276 // Here we choose theta so that it specifies the long direction, sigma_x
277 //----------------------------------------------------------------------------//
278
279 // s is (sin(theta))^2
280 // s2 = (a-x2)*(a-x2)/(b*b + (a-x2)*(a-x2));
281 s = ( a - x1 ) * ( a - x1 ) / ( b * b + ( a - x1 ) * ( a - x1 ) );
282
283 // First check if x1-x2 will be close to zero
284
285 if( fabs( x1 - x2 ) < 1e-12 )
286 {
287 theta = 0;
288 return;
289 }
290
291 theta0 = 0.5 * asin( 2 * b / ( x1 - x2 ) ); // This always gives the correct sign
292 theta1 = asin( sqrt( s ) ); // This always gives the correct magnitude, and seems to be more accurate
293
294 // Compare signs. If they match, then we use theta1
295 if( std::signbit( theta0 ) == std::signbit( theta1 ) )
296 {
297 theta = theta1;
298 }
299 else
300 {
301 // Otherwise, we switch quadrants
302 theta = asin( -sqrt( s ) );
303 }
304}
305
306/// Convert from (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$) to (a,b,c) for the elliptical Gaussian.
307/** The general 2D elliptical Gaussian
308 *
309 * \f$ f(x,y) = G_0 + G\exp [-0.5( a(x-x_0)^2 + b(x-x_0)(y-y_0) + c(y-y_0)^2 ]\f$
310 *
311 * can be expressed in terms of widths and a rotation angle using:
312 *
313 * \f$ a = \frac{\cos^2 \theta}{\sigma_x^2} + \frac{\sin^2\theta}{\sigma_y^2}\f$
314 *
315 * \f$ b = \frac{\sin 2\theta}{2} \left(\frac{1}{\sigma_x^2} - \frac{1}{\sigma_y^2} \right)\f$
316 *
317 * \f$ c = \frac{\sin^2 \theta}{\sigma_x^2} + \frac{\cos^2\theta}{\sigma_y^2}\f$
318 *
319 * where \f$ \theta \f$ specifies a counter-clockwise rotation.
320 *
321 * This function calculates (a,b,c) from inputs (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$).
322 *
323 * \tparam realT is the type to use for arithmetic
324 *
325 * \ingroup gen_math_gaussians
326 */
327template <typename realT>
328void gaussian2D_rot2gen( realT &a, ///< [out] the first rotation and scaling parameter
329 realT &b, ///< [out] the second rotation and scaling parameter
330 realT &c, ///< [out] the the third rotation and scaling parameter
331 const realT sigma_x, ///< [in] the width parameter in the rotated x-direction
332 const realT sigma_y, ///< [in] the width parameter in the rotated y-direction
333 const realT theta ///< [in] the c.c.w rotation
334)
335{
336 realT sn, cs, sx2, sy2;
337
338 sn = sin( theta );
339 cs = cos( theta );
340 sx2 = sigma_x * sigma_x;
341 sy2 = sigma_y * sigma_y;
342
343 a = cs * cs / sx2 + sn * sn / sy2;
344 b = sn * cs * ( 1. / sx2 - 1. / sy2 );
345 c = sn * sn / sx2 + cs * cs / sy2;
346}
347
348/// Find value at position (x,y) of the 2D rotated elliptical Gaussian
349/**
350 * Computes:
351 * \f$ f(x,y) = G_0 + G\exp [-0.5( a(x-x_0)^2 + b(x-x_0)(y-y_0) + c(y-y_0)^2 ]\f$
352 *
353 * where, for a counter-clockwise rotation \f$ \theta \f$, we have
354 *
355 * \f$ a = \frac{\cos^2 \theta}{\sigma_x^2} + \frac{\sin^2\theta}{\sigma_y^2}\f$
356 *
357 * \f$ b = \frac{\sin 2\theta}{2} \left(\frac{1}{\sigma_x^2} - \frac{1}{\sigma_y^2} \right)\f$
358 *
359 * \f$ c = \frac{\sin^2 \theta}{\sigma_x^2} + \frac{\cos^2\theta}{\sigma_y^2}\f$
360 *
361 * This is a convenience wrapper for the general elliptical Gaussian function gaussian2D(), where here
362 * (a,b,c) are first calculated from (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$). This will in general be
363 * slower due to the trig function calls, so the (a,b,c) version should be used most of the time.
364 *
365 * The functions gaussian2D_gen2rot() and gaussian2D_rot2gen() provide conversions from
366 * (a,b,c) to (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$) and back. The function gaussian2D_rot() is a
367 * wrapper for this function, which instead accepts (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$) as inputs.
368 *
369 * \returns the value of the 2D elliptical Gaussian at (x,y)
370 *
371 * \tparam realT is the type to use for arithmetic
372 *
373 * \ingroup gen_math_gaussians
374 */
375template <typename realT>
376realT gaussian2D_ang( const realT x, ///< [in] the x-position at which to evaluate the Gaussian
377 const realT y, ///< [in] the y-positoin at which to evaluate the Gaussian
378 const realT G0, ///< [in] the constant to add to the Gaussian
379 const realT G, ///< [in] the scaling factor (peak height = G-G0)
380 const realT x0, ///< [in] the x-coordinate of the center
381 const realT y0, ///< [in] the y-coordinate of the center
382 const realT sigma_x, ///< [in] the width in the rotated x direction
383 const realT sigma_y, ///< [in] the width in the rotated y direction
384 const realT theta ///< [in] the counter-clockwise rotation angle
385)
386{
387 realT a, b, c;
388
389 gaussian2D_rot2gen( a, b, c, sigma_x, sigma_y, theta );
390
391 return gaussian2D( x, y, G0, G, x0, y0, a, b, c );
392}
393
394/// Fill in an array with the 2D general elliptical Gaussian
395/**
396 * At each pixel (x,y) of the array this computes:
397 *
398 * \f$ f(x,y) = G_0 + G\exp [-0.5( a(x-x_0)^2 + b(x-x_0)(y-y_0) + c(y-y_0)^2 ]\f$
399 *
400 * where, for a counter-clockwise rotation \f$ \theta \f$, we have
401 *
402 * \f$ a = \frac{\cos^2 \theta}{\sigma_x^2} + \frac{\sin^2\theta}{\sigma_y^2}\f$
403 *
404 * \f$ b = \frac{\sin 2\theta}{2} \left(\frac{1}{\sigma_x^2} - \frac{1}{\sigma_y^2} \right)\f$
405 *
406 * \f$ c = \frac{\sin^2 \theta}{\sigma_x^2} + \frac{\cos^2\theta}{\sigma_y^2}\f$
407 *
408 * In this version the parameters are specified directly as (a,b,c), in particular avoiding the trig function calls.
409 * This should be much more efficient, and so this version should be used inside fitting routines, etc.
410 *
411 * The functions gaussian2D_gen2rot() and gaussian2D_rot2gen() provide conversions from
412 * (a,b,c) to (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$) and back. The function gaussian2D_ang() is a
413 * wrapper for this function, which instead accepts (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$) as inputs.
414 *
415 * \tparam realT is the type to use for arithmetic
416 *
417 * \ingroup gen_math_gaussians
418 */
419template <typename realT>
420void gaussian2D( realT *arr, ///< [out] the native array to populate with the Gaussian function
421 size_t nx, ///< [in] the x-size of the array, in pixels
422 size_t ny, ///< [in] the y-size of the array, in pixels
423 const realT G0, ///< [in] the constant to add to the Gaussian
424 const realT G, ///< [in] the scaling factor (peak = G)
425 const realT x0, ///< [in] the x-coordinate of the center, in pixels
426 const realT y0, ///< [in] the y-coordinate of the center, in pixels
427 const realT a, ///< [in] is the first rotation and scaling factor
428 const realT b, ///< [in] is the second rotation and scaling factor
429 const realT c ///< [in] is the third rotation and scaling factor
430)
431{
432 size_t idx;
433
434 for( size_t j = 0; j < ny; ++j )
435 {
436 for( size_t i = 0; i < nx; ++i )
437 {
438 idx = i + j * nx;
439
440 arr[idx] = gaussian2D( (realT)i, (realT)j, G0, G, x0, y0, a, b, c );
441 }
442 }
443}
444
445/// Fill in an array with the 2D general elliptical Gaussian
446/**
447 * At each pixel (x,y) of the array this computes:
448 *
449 * \f$ f(x,y) = G_0 + G\exp [-0.5( a(x-x_0)^2 + b(x-x_0)(y-y_0) + c(y-y_0)^2 ]\f$
450 *
451 * where, for a counter-clockwise rotation \f$ \theta \f$, we have
452 *
453 * \f$ a = \frac{\cos^2 \theta}{\sigma_x^2} + \frac{\sin^2\theta}{\sigma_y^2}\f$
454 *
455 * \f$ b = \frac{\sin 2\theta}{2} \left(\frac{1}{\sigma_x^2} - \frac{1}{\sigma_y^2} \right)\f$
456 *
457 * \f$ c = \frac{\sin^2 \theta}{\sigma_x^2} + \frac{\cos^2\theta}{\sigma_y^2}\f$
458 *
459 * This is a convenience wrapper for the general elliptical Gaussian function
460 * gaussian2D( realT *, size_t, size_t, const realT, const realT, const realT, const realT, const realT, const realT,
461 * const realT) , where here (a,b,c) are first calculated from (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$).
462 *
463 * The functions gaussian2D_gen2rot() and gaussian2D_rot2gen() provide conversions from
464 * (a,b,c) to (\f$\sigma_x\f$,\f$\sigma_y\f$,\f$\theta\f$) and back.
465 *
466 *
467 * \tparam realT is the type to use for arithmetic
468 *
469 * \ingroup gen_math_gaussians
470 */
471template <typename realT>
472void gaussian2D_ang( realT *arr, ///< [out] the native array to populate with the Gaussian function
473 size_t nx, ///< [in] the x-size of the array, in pixels
474 size_t ny, ///< [in] the y-size of the array, in pixels
475 const realT G0, ///< [in] the constant to add to the Gaussian
476 const realT G, ///< [in] the scaling factor (peak = G)
477 const realT x0, ///< [in] the x-coordinate of the center, in pixels
478 const realT y0, ///< [in] the y-coordinate of the center, in pixels
479 const realT sigma_x, ///< [in] the width in the rotated x direction, in pixels
480 const realT sigma_y, ///< [in] the width in the rotated y direction, in pixels
481 const realT theta ///< [in] the counter-clockwise rotation angle, in radians
482)
483{
484 realT a, b, c;
485 size_t idx;
486
487 // Get the (a,b,c) parameters so the trig only happens once
488 gaussian2D_rot2gen( a, b, c, sigma_x, sigma_y, theta );
489
490 gaussian2D( arr, nx, ny, G0, G, x0, y0, a, b, c );
491}
492
493/// Calculate the Jacobian at position (x,y) for the 2D general elliptical Gaussian
494/** \note this has not been verified and may be incorrect.
495 *
496 * Given:
497 *
498 * \f$ f(x,y) = G_0 + G\exp [-0.5( a(x-x_0)^2 + b(x-x_0)(y-y_0) + c(y-y_0)^2 ]\f$
499 *
500 * we calculate
501 *
502 * \f$ \frac{\partial G}{\partial G_0} = 1 \f$
503 *
504 * \f$ \frac{\partial G}{\partial G} = (G - G_0)/A \f$
505 *
506 * \f$ \frac{\partial G}{\partial x_0} = 0.5(G-G_0)( 2a(x-x_0) + b(y-y_0)) \f$
507 *
508 * \f$ \frac{\partial G}{\partial y_0} = 0.5(G-G_0) ( b(x-x_0) + 2c(y-y_0)) \f$
509 *
510 * \f$ \frac{\partial G}{\partial a} = -0.5(G-G_0) ( (x-x_0)^2 ) \f$
511 *
512 * \f$ \frac{\partial G}{\partial b} = -0.5(G-G_0) ( (x-x_0)(y-y_0) ) \f$
513 *
514 * \f$ \frac{\partial G}{\partial c} = -0.5(G-G_0) ( (y-y_0)^2 )\f$
515 *
516 * \param j is a 7 element vector which is populated with the derivatives
517 * \param x is the x-position at which to evaluate the Gaussian
518 * \param y is the y-positoin at which to evaluate the Gaussian
519 * \param G0 is the constant to add to the Gaussian
520 * \param G is the scaling factor (peak = A)
521 * \param x0 is the x-coordinate of the center
522 * \param y0 is the y-coordinate of the center
523 * \param a is the first rotation and scaling factor
524 * \param b is the second rotation and scaling factor
525 * \param c is the third rotation and scaling factor
526 *
527 *
528 * \tparam realT is the type to use for arithmetic
529 *
530 * \ingroup gen_math_gaussians
531 */
532template <typename realT>
534 const realT x,
535 const realT y,
536 const realT G0,
537 const realT G,
538 const realT x0,
539 const realT y0,
540 const realT a,
541 const realT b,
542 const realT c )
543{
544 realT G_G0 = gaussian2D<realT>( x, y, 0, G, x0, y0, a, b, c );
545
546 j[0] = (realT)1;
547
548 j[1] = ( G_G0 ) / G;
549
550 j[2] = 0.5 * G_G0 * ( 2 * a * ( x - x0 ) + b * ( y - y0 ) );
551
552 j[3] = 0.5 * G_G0 * ( b * ( x - x0 ) + 2 * c * ( y - y0 ) );
553
554 j[4] = -0.5 * G_G0 * ( ( x - x0 ) * ( x - x0 ) );
555
556 j[5] = -0.5 * G_G0 * ( ( x - x0 ) * ( y - y0 ) );
557
558 j[6] = -0.5 * G_G0 * ( ( y - y0 ) * ( y - y0 ) );
559}
560
561} // namespace func
562} // namespace math
563} // namespace mx
564
565#endif // gaussian_hpp
realT gaussian2D(const realT x, const realT y, const realT G0, const realT G, const realT x0, const realT y0, const realT sigma)
Find value at position (x,y) of the 2D arbitrarily-centered symmetric Gaussian.
Definition gaussian.hpp:127
floatT sigma2fwhm(floatT sig)
Convert from Gaussian width parameter to FWHM.
Definition gaussian.hpp:79
floatT fwhm2sigma(floatT fw)
Convert from FWHM to the Gaussian width parameter.
Definition gaussian.hpp:64
realT gaussian2D_ang(const realT x, const realT y, const realT G0, const realT G, const realT x0, const realT y0, const realT sigma_x, const realT sigma_y, const realT theta)
Find value at position (x,y) of the 2D rotated elliptical Gaussian.
Definition gaussian.hpp:376
realT gaussian(const realT x, const realT G0, const realT G, const realT x0, const realT sigma)
Find value at position (x) of the 1D arbitrarily-centered symmetric Gaussian.
Definition gaussian.hpp:99
void gaussian2D_gen2rot(realT &sigma_x, realT &sigma_y, realT &theta, const realT a, const realT b, const realT c)
Convert from (a,b,c) to ( , , ) for the elliptical Gaussian.
Definition gaussian.hpp:246
void gaussian2D_jacobian(realT *j, const realT x, const realT y, const realT G0, const realT G, const realT x0, const realT y0, const realT a, const realT b, const realT c)
Calculate the Jacobian at position (x,y) for the 2D general elliptical Gaussian.
Definition gaussian.hpp:533
constexpr floatT twosqrt2log2()
Constant to convert between the Gaussian width parameter and FWHM.
Definition gaussian.hpp:49
void gaussian2D_rot2gen(realT &a, realT &b, realT &c, const realT sigma_x, const realT sigma_y, const realT theta)
Convert from ( , , ) to (a,b,c) for the elliptical Gaussian.
Definition gaussian.hpp:328
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
The mxlib c++ namespace.
Definition mxError.hpp:106