27#ifndef __imCenterCircleSym_hpp__
28#define __imCenterCircleSym_hpp__
30#include "../math/vectorUtils.hpp"
31#include "../math/fit/fitGaussian.hpp"
49template <
typename realT>
83 init( 5, 0.1, 1.0, 20.0, 1.0 );
119 if(
mask->rows() == im.rows() &&
mask->cols() == im.cols() )
130 std::vector<std::vector<realT>> rads;
135 realT startX, startY;
139 for(
int i = 0; i < N; ++i )
142 for(
int j = 0; j < N; ++j )
146 for(
int k = 0; k < rads.size(); ++k )
151 for(
int ii = startX -
maxRad; ii <= startX +
maxRad; ++ii )
153 for(
int jj = startY -
maxRad; jj <= startY +
maxRad; ++jj )
158 if( ( *
mask )( ii, jj ) == 0 )
163 rad = sqrt( pow( ii - startX, 2 ) + pow( jj - startY, 2 ) );
165 if( rad < minRad || rad >=
maxRad )
168 rads[( rad -
minRad ) /
dRad].push_back( im( ii, jj ) );
175 for(
int k = 0; k < rads.size(); ++k )
177 if( rads[k].size() <= 1 )
182 grid( i, j ) += var / pow( mean, 2 );
203 realT
mx, mn, gx, gy;
229 template <
typename iosT,
char comment = '#'>
232 char c[] = { comment,
'\0' };
234 ios << c <<
"--------------------------------------\n";
235 ios << c <<
"mx::improc::imCenterCircleSym Results \n";
236 ios << c <<
"--------------------------------------\n";
237 ios << c <<
"Estimated x-center: " <<
_x0 -
maxPix +
fit.x0() *
dPix <<
"\n";
238 ios << c <<
"Estimated y-center: " <<
_y0 -
maxPix +
fit.y0() *
dPix <<
"\n";
239 ios << c <<
"Cost half-width: "
240 << 0.5 * sigma2fwhm( sqrt( pow(
fit.sigma_x(), 2 ) + pow(
fit.sigma_y(), 2 ) ) *
dPix ) <<
" pixels\n";
241 ios << c <<
"--------------------------------------\n";
242 ios << c <<
"Setup:\n";
243 ios << c <<
"--------------------------------------\n";
244 ios << c <<
"maxPix: " <<
maxPix <<
"\n";
245 ios << c <<
"dPix: " <<
dPix <<
"\n";
246 ios << c <<
"minRad: " <<
minRad <<
"\n";
247 ios << c <<
"maxRad: " <<
maxRad <<
"\n";
248 ios << c <<
"dRad: " <<
dRad <<
"\n";
249 ios << c <<
"smWidth: " <<
smWidth <<
"\n";
250 ios << c <<
"guessWidth: " <<
guessWidth <<
"\n";
251 ios << c <<
"--------------------------------------\n";
252 ios << c <<
"Fit results:\n";
253 fit.dumpReport( ios );
254 ios << c <<
"--------------------------------------\n";
264 template <
char comment = '#'>
267 return dumpResults<std::ostream, comment>( std::cout );
Tools for using the eigen library for image processing.
Eigen::Array< scalarT, -1, -1 > eigenImage
Definition of the eigenImage type, which is an alias for Eigen::Array.
void filterImage(imageOutT &fim, imageInT im, kernelT kernel, int maxr=0)
Filter an image with a mean kernel.
valueT vectorMean(const valueT *vec, size_t sz)
Calculate the mean of a vector.
valueT vectorVariance(const valueT *vec, size_t sz, valueT mean)
Calculate the variance of a vector relative to a supplied mean value.
Image filters (smoothing, radial profiles, etc.)
Symetric Gaussian smoothing kernel.
Find the center of the image of a point source using circular symmetry of the PSF.
iosT & dumpResults(iosT &ios)
Output the results to a stream.
realT minRad
The minimum radius to include in the cost function. Default: 1.0.
eigenImage< realT > grid
The cost grid.
realT _x0
Internal storage of the guess center position.
realT dRad
The spacing of the radii. Default: 1.0.
int init(realT maxP, realT dP, realT minR, realT maxR, realT dR)
Initialize the grid.
eigenImage< realT > smGrid
The smoothed cost grid.
eigenImage< realT > * mask
mx::math::fit::fitGaussian2Dgen< realT > fit
The fitter for finding the centroid of the grid. You can use this to inspect the details of the fit i...
realT _y0
Internal storage of the guess center position.
realT dPix
The spacing of the points in the grid search. Default: 0.1.
std::ostream & dumpResults()
Output the results to std::cout.
int center(realT &x, realT &y, eigenImage< realT > &im, realT x0, realT y0)
Peform the grid search and fit.
realT maxRad
The maximum radius to include in the cost function Default: 20.0.
realT maxPix
The maximum range of the grid search, the grid will be +/- maxPix. Default: 5.0.