mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
imCenterCircleSym.hpp
Go to the documentation of this file.
1/** \file imCenterCircleSym.hpp
2 * \brief A class to find PSF centers using circular symmetry.
3 * \ingroup image_processing_files
4 * \author Jared R. Males (jaredmales@gmail.com)
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2015, 2016, 2017 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef __imCenterCircleSym_hpp__
28#define __imCenterCircleSym_hpp__
29
30#include "../math/vectorUtils.hpp"
31#include "../math/fit/fitGaussian.hpp"
32#include "imageFilters.hpp"
33#include "eigenImage.hpp"
34
35// #define ICCS_OMP
36namespace mx
37{
38namespace improc
39{
40
41/// Find the center of the image of a point source using circular symmetry of the PSF.
42/** Conducts a grid search through possible center positions. Finds the point with the minimum
43 * total variance around concentric circles about that point. The cost grid is fit with a Gaussian.
44 *
45 * \tparam realT is a real floating point type.
46 *
47 * \ingroup image_reg
48 */
49template <typename realT>
51{
52
53 eigenImage<realT> *mask; ///< An optional pointer to a mask. If not NULL and the same size as the input image, any
54 ///< 0 pixels in this image are ignored.
55
56 eigenImage<realT> grid; ///< The cost grid.
57 eigenImage<realT> smGrid; ///< The smoothed cost grid.
58
59 realT maxPix; ///< The maximum range of the grid search, the grid will be +/- maxPix. Default: 5.0.
60 realT dPix; ///< The spacing of the points in the grid search. Default: 0.1.
61
62 realT minRad; ///< The minimum radius to include in the cost function. Default: 1.0.
63 realT maxRad; ///< The maximum radius to include in the cost function Default: 20.0.
64 realT dRad; ///< The spacing of the radii. Default: 1.0.
65
66 realT smWidth; ///< FWHM of the Guassian smoothing kernel. Default is 10 (seems to work well regardless of dPix).
67 ///< Set to 0 for no smoothing.
68 realT guessWidth; ///< Guess in original pixels for the FWHM of the cost grid. Default is 0.5, which seems to work
69 ///< well in most cases.
70
71 /// The fitter for finding the centroid of the grid. You can use this to inspect the details of the fit if desired.
72 // mx::math::fit::fitGaussian2D<mx::gaussian2D_gen_fitter<realT>> fit;
74
75 realT _x0; ///< Internal storage of the guess center position
76 realT _y0; ///< Internal storage of the guess center position.
77
79 {
80
81 mask = 0;
82
83 init( 5, 0.1, 1.0, 20.0, 1.0 );
84
85 smWidth = 10;
86 guessWidth = 0.5;
87 }
88
89 /// Initialize the grid.
90 int init( realT maxP, ///< [in] the new value of maxPix
91 realT dP, ///< [in] the new value of dPix
92 realT minR, ///< [in] the new value of minRad
93 realT maxR, ///< [in] the new value of maxRad
94 realT dR ///< [in] the new value of dRad
95 )
96 {
97 maxPix = maxP;
98 dPix = dP;
99 minRad = minR;
100 maxRad = maxR;
101 dRad = dR;
102 return 0;
103 }
104
105 /// Peform the grid search and fit.
106 int center( realT &x, ///< [out] the x-coordinate of the estimated center of rotational symmetry
107 realT &y, ///< [out] the y-coordinate estimated center of rotational symmetry
108 eigenImage<realT> &im, ///< [in] the image to centroid
109 realT x0, ///< [in] an initial guess at the x-coordinate, the grid is centered about this point.
110 realT y0 ///< [in] an initial guess at the y-coordinate, the grid is centered about this point.
111 )
112 {
113 _x0 = x0;
114 _y0 = y0;
115
116 bool doMask = false;
117 if( mask )
118 {
119 if( mask->rows() == im.rows() && mask->cols() == im.cols() )
120 doMask = true;
121 }
122
123 grid.resize( 2 * ( maxPix / dPix ) + 1, 2 * ( maxPix / dPix ) + 1 );
124
125#ifdef ICCS_OMP
126#pragma omp parallel
127 {
128#endif
129 int nRad = ( maxRad - minRad ) / dRad + 1;
130 std::vector<std::vector<realT>> rads;
131 rads.resize( nRad );
132
133 int N = 2 * ( maxPix / dPix ) + 1;
134
135 realT startX, startY;
136#ifdef ICCS_OMP
137#pragma omp for
138#endif
139 for( int i = 0; i < N; ++i )
140 {
141 startX = x0 - maxPix + i * dPix;
142 for( int j = 0; j < N; ++j )
143 {
144 startY = y0 - maxPix + j * dPix;
145
146 for( int k = 0; k < rads.size(); ++k )
147 {
148 rads[k].clear();
149 }
150
151 for( int ii = startX - maxRad; ii <= startX + maxRad; ++ii )
152 {
153 for( int jj = startY - maxRad; jj <= startY + maxRad; ++jj )
154 {
155
156 if( doMask )
157 {
158 if( ( *mask )( ii, jj ) == 0 )
159 continue;
160 }
161
162 realT rad;
163 rad = sqrt( pow( ii - startX, 2 ) + pow( jj - startY, 2 ) );
164
165 if( rad < minRad || rad >= maxRad )
166 continue;
167
168 rads[( rad - minRad ) / dRad].push_back( im( ii, jj ) );
169 } // jj
170 } // ii
171
172 grid( i, j ) = 0;
173
174 realT mean, var;
175 for( int k = 0; k < rads.size(); ++k )
176 {
177 if( rads[k].size() <= 1 )
178 continue;
179 mean = math::vectorMean( rads[k] );
180 var = math::vectorVariance( rads[k], mean );
181
182 grid( i, j ) += var / pow( mean, 2 );
183 }
184 } // j
185 } // i
186#ifdef ICCS_OMP
187 } // omp parallel
188#endif
189 //-------- Now Smooth the grid, and multiply by -1 for fitting -------------
190
191 if( smWidth > 0 )
192 {
194 }
195 else
196 {
197 smGrid = grid;
198 }
199
200 smGrid *= -1;
201
202 // Get initial guess for the fit.
203 realT mx, mn, gx, gy;
204
205 mx = smGrid.maxCoeff( &gx, &gy );
206 mn = smGrid.minCoeff();
207
208 //------------- Now fit the smoothed cost grid to a 2D elliptical Gaussian ------------
209 /** \todo This needs to be able to handle highly non-symmetric peaks much better.
210 */
211 fit.setArray( smGrid.data(), smGrid.rows(), smGrid.cols() );
212 fit.setGuess( mn, mx - mn, gx, gy, guessWidth / dPix, guessWidth / dPix, 0 );
213
214 fit.fit();
215
216 // The estimated enter of circular symmetry from the fit.
217 x = x0 - maxPix + fit.x0() * dPix;
218 y = y0 - maxPix + fit.y0() * dPix;
219
220 return 0;
221 }
222
223 /// Output the results to a stream
224 /** Prints a result summary to the input stream.
225 *
226 * \tparam iosT is a std::ostream-like type.
227 * \tparam comment is a comment character to start each line. Can be '\0'.
228 */
229 template <typename iosT, char comment = '#'>
230 iosT &dumpResults( iosT &ios )
231 {
232 char c[] = { comment, '\0' };
233
234 ios << c << "--------------------------------------\n";
235 ios << c << "mx::improc::imCenterCircleSym Results \n";
236 ios << c << "--------------------------------------\n";
237 ios << c << "Estimated x-center: " << _x0 - maxPix + fit.x0() * dPix << "\n";
238 ios << c << "Estimated y-center: " << _y0 - maxPix + fit.y0() * dPix << "\n";
239 ios << c << "Cost half-width: "
240 << 0.5 * sigma2fwhm( sqrt( pow( fit.sigma_x(), 2 ) + pow( fit.sigma_y(), 2 ) ) * dPix ) << " pixels\n";
241 ios << c << "--------------------------------------\n";
242 ios << c << "Setup:\n";
243 ios << c << "--------------------------------------\n";
244 ios << c << "maxPix: " << maxPix << "\n";
245 ios << c << "dPix: " << dPix << "\n";
246 ios << c << "minRad: " << minRad << "\n";
247 ios << c << "maxRad: " << maxRad << "\n";
248 ios << c << "dRad: " << dRad << "\n";
249 ios << c << "smWidth: " << smWidth << "\n";
250 ios << c << "guessWidth: " << guessWidth << "\n";
251 ios << c << "--------------------------------------\n";
252 ios << c << "Fit results:\n";
253 fit.dumpReport( ios );
254 ios << c << "--------------------------------------\n";
255
256 return ios;
257 }
258
259 /// Output the results to std::cout
260 /** Prints a result summary to std::cout
261 *
262 * \tparam comment is a comment character to start each line. Can be '\0'.
263 */
264 template <char comment = '#'>
265 std::ostream &dumpResults()
266 {
267 return dumpResults<std::ostream, comment>( std::cout );
268 }
269};
270
271} // namespace improc
272} // namespace mx
273
274#endif //__imCenterCircleSym_hpp__
Tools for using the eigen library for image processing.
Eigen::Array< scalarT, -1, -1 > eigenImage
Definition of the eigenImage type, which is an alias for Eigen::Array.
void filterImage(imageOutT &fim, imageInT im, kernelT kernel, int maxr=0)
Filter an image with a mean kernel.
valueT vectorMean(const valueT *vec, size_t sz)
Calculate the mean of a vector.
valueT vectorVariance(const valueT *vec, size_t sz, valueT mean)
Calculate the variance of a vector relative to a supplied mean value.
Image filters (smoothing, radial profiles, etc.)
The mxlib c++ namespace.
Definition mxError.hpp:106
Symetric Gaussian smoothing kernel.
Find the center of the image of a point source using circular symmetry of the PSF.
iosT & dumpResults(iosT &ios)
Output the results to a stream.
realT minRad
The minimum radius to include in the cost function. Default: 1.0.
eigenImage< realT > grid
The cost grid.
realT _x0
Internal storage of the guess center position.
realT dRad
The spacing of the radii. Default: 1.0.
int init(realT maxP, realT dP, realT minR, realT maxR, realT dR)
Initialize the grid.
eigenImage< realT > smGrid
The smoothed cost grid.
mx::math::fit::fitGaussian2Dgen< realT > fit
The fitter for finding the centroid of the grid. You can use this to inspect the details of the fit i...
realT _y0
Internal storage of the guess center position.
realT dPix
The spacing of the points in the grid search. Default: 0.1.
std::ostream & dumpResults()
Output the results to std::cout.
int center(realT &x, realT &y, eigenImage< realT > &im, realT x0, realT y0)
Peform the grid search and fit.
realT maxRad
The maximum radius to include in the cost function Default: 20.0.
realT maxPix
The maximum range of the grid search, the grid will be +/- maxPix. Default: 5.0.