mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
vectorUtils.hpp
Go to the documentation of this file.
1/** \file vectorUtils.hpp
2 * \author Jared R. Males
3 * \brief Header for the std::vector utilities
4 * \ingroup gen_math_files
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2015, 2016, 2017, 2018 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef math_vectorUtils_hpp
28#define math_vectorUtils_hpp
29
30#include <vector>
31#include <algorithm>
32#include <functional>
33#include <numeric>
34
35#include "func/gaussian.hpp"
36
37namespace mx
38{
39namespace math
40{
41
42/** \ingroup vectorutils
43 *@{
44 */
45
46/// Fill in a vector with a regularly spaced scale
47/** Fills in the vector with a 0....N-1 scale. The spacing of the points
48 * can be changed with the scale parameter, and the starting point can be
49 * changed with the offset.
50 *
51 * Example:
52 \code
53 std::vector vec;
54
55 mx::vectorScale(vec, 1000, 0.001, 0.001); // Produces a vector with values 0.001,0.002,.... 1.000
56 \endcode
57 *
58 * \tparam vectorT is a std::vector type.
59 */
60template <typename vectorT>
62 vectorT &vec, ///< [out] the vector to fill in, can be pre-allocated or not
63 size_t N =
64 0, ///< [in] [optional] if specified > 0, then vec is resize()-ed. Default is 0, and vec is not resize()-ed.
65 typename vectorT::value_type scale =
66 0, ///< [in] [optional] if specified !=0, then the points are spaced by this value. Default spacing is 1.
67 typename vectorT::value_type offset =
68 0 ///< [in] [optional] if specified !=0, then the starting point of the scale is this value.
69)
70{
71 if( scale == 0 )
72 scale = 1.0;
73
74 if( N > 0 )
75 vec.resize( N );
76
77 for( int i = 0; i < vec.size(); ++i )
78 vec[i] = i * scale + offset;
79}
80
81/// Return the indices of the vector in sorted order, without altering the vector itself
82/** Example:
83 \code
84 std::vector<double> x;
85 // -> fill in x with values
86
87 std::vector<size_t> idx;
88 idx = mx::sortOrder(x);
89
90 //Print x to stdout in sorted order
91 for(int i=0; i< x.size(); ++i) std::cout << x[idx[i]] << "\n";
92 \endcode
93
94 * \tparam memberT is the member type of the vector. Must have < comparison defined.
95 */
96template <typename memberT>
97std::vector<size_t> vectorSortOrder( std::vector<memberT> const &values /**< [in] the vector to sort */ )
98{
99 std::vector<size_t> indices( values.size() );
100
101 std::iota( begin( indices ), end( indices ), static_cast<size_t>( 0 ) );
102
103 std::sort( begin( indices ), end( indices ), [&]( size_t a, size_t b ) { return values[a] < values[b]; } );
104
105 return indices; /// \returns the indices of the vector in sorted order.
106}
107
108/// Calculate the sum of a vector.
109/**
110 *
111 * \returns the sum of vec
112 *
113 * \tparam vectorT the std::vector type of vec
114 *
115 */
116template <typename valueT>
117valueT vectorSum( const valueT *vec, ///< [in] the vector
118 size_t sz ///< [in] the size of the vector
119)
120{
121 valueT sum = 0;
122
123 for( size_t i = 0; i < sz; ++i )
124 sum += vec[i];
125
126 return sum;
127}
128
129/// Calculate the sum of a vector.
130/**
131 *
132 * \returns the sum of vec
133 *
134 * \tparam vectorT the std::vector type of vec
135 *
136 */
137template <typename vectorT>
138typename vectorT::value_type vectorSum( const vectorT &vec /**< [in] the vector */ )
139{
140 typename vectorT::value_type sum = 0;
141
142 for( size_t i = 0; i < vec.size(); ++i )
143 sum += vec[i];
144
145 return sum;
146}
147
148/// Calculate the mean of a vector.
149/**
150 *
151 * \returns the mean of vec
152 *
153 * \tparam vectorT the std::vector type of vec
154 *
155 */
156template <typename valueT>
157valueT vectorMean( const valueT *vec, ///< [in] the vector
158 size_t sz ///< [in] the size of the vector
159)
160{
161 valueT mean = 0;
162
163 for( size_t i = 0; i < sz; ++i )
164 mean += vec[i];
165
166 mean /= sz;
167
168 return mean;
169}
170
171/// Calculate the mean of a vector.
172/**
173 *
174 * \returns the mean of vec
175 *
176 * \tparam vectorT the std::vector type of vec
177 *
178 */
179template <typename vectorT>
180typename vectorT::value_type vectorMean( const vectorT &vec /**< [in] the vector */ )
181{
182 typename vectorT::value_type mean = 0;
183
184 for( size_t i = 0; i < vec.size(); ++i )
185 mean += vec[i];
186
187 mean /= vec.size();
188
189 return mean;
190}
191
192/// Calculate the weighted mean of a vector.
193/**
194 * \returns the weighted mean of vec
195 *
196 * \tparam vectorT the std::vector type of vec and w
197 *
198 */
199template <typename vectorT>
200typename vectorT::value_type vectorMean( const vectorT &vec, ///< [in] the vector */
201 const vectorT &w ///< [in] the weights
202)
203{
204 typename vectorT::value_type mean = 0, wsum = 0;
205
206 for( size_t i = 0; i < vec.size(); ++i )
207 {
208 mean += w[i] * vec[i];
209 wsum += w[i];
210 }
211
212 mean /= wsum;
213
214 return mean;
215}
216
217/// Calculate median of a vector in-place, altering the vector.
218/** Returns the center element if vec has an odd number of elements. Returns the mean of the center 2 elements if vec
219 * has an even number of elements.
220 *
221 * \returns the median of vec
222 *
223 * \tparam vectorT the std::vector type of vec
224 *
225 */
226template <typename vectorT>
227typename vectorT::value_type vectorMedianInPlace( vectorT &vec /**< [in] the vector, is altered by std::nth_element*/ )
228{
229 typename vectorT::value_type med;
230
231 int n = 0.5 * vec.size();
232
233 std::nth_element( vec.begin(), vec.begin() + n, vec.end() );
234
235 med = vec[n];
236
237 // Average two points if even number of points
238 if( vec.size() % 2 == 0 )
239 {
240 med = 0.5 * ( med + *std::max_element( vec.begin(), vec.begin() + n ) );
241 }
242
243 return med;
244}
245
246/// Calculate median of a vector, leaving the vector unaltered.
247/** Returns the center element if vec has an odd number of elements. Returns the mean of the center 2 elements if vec
248 * has an even number of elements.
249 *
250 * \returns the median of vec
251 *
252 * \tparam vectorT the std::vector type of vec
253 *
254 */
255template <typename vectorT>
256typename vectorT::value_type
257vectorMedian( const vectorT &vec, ///< [in] the vector for which the median is desired
258 vectorT *work = 0 ///< [in] [optional] an optional vector to use as workspace, use to avoid re-allocation
259)
260{
261 typename vectorT::value_type med;
262
263 bool localWork = false;
264 if( work == 0 )
265 {
266 work = new vectorT;
267 localWork = true;
268 }
269
270 work->resize( vec.size() );
271
272 for( int i = 0; i < vec.size(); ++i )
273 {
274 ( *work )[i] = vec[i];
275 }
276
277 med = vectorMedianInPlace( *work );
278
279 if( localWork )
280 delete work;
281
282 return med;
283}
284
285/// Calculate the variance of a vector relative to a supplied mean value.
286/**
287 * \returns the variance of vec w.r.t. mean
288 *
289 * \tparam valueT the data type
290 *
291 */
292template <typename valueT>
293valueT vectorVariance( const valueT *vec, ///< [in] the vector
294 size_t sz, ///< [in] the size of the vector
295 valueT mean ///< [in] the mean value with which to calculate the variance
296)
297{
298 valueT var;
299
300 var = 0;
301 for( size_t i = 0; i < sz; ++i )
302 var += pow( vec[i] - mean, 2 );
303
304 var /= ( sz - 1 );
305
306 return var;
307}
308
309/// Calculate the variance of a vector relative to a supplied mean value.
310/**
311 * \returns the variance of vec w.r.t. mean
312 *
313 * \tparam vectorT the std::vector type of vec
314 *
315 */
316template <typename vectorT>
317typename vectorT::value_type
318vectorVariance( const vectorT &vec, ///< [in] the vector
319 const typename vectorT::value_type &mean ///< [in] the mean value with which to calculate the variance
320)
321{
322 typename vectorT::value_type var;
323
324 var = 0;
325 for( size_t i = 0; i < vec.size(); ++i )
326 {
327 var += ( vec[i] - mean ) * ( vec[i] - mean );
328 }
329
330 var /= ( vec.size() - 1 );
331
332 return var;
333}
334
335/// Calculate the variance of a vector.
336/**
337 * \returns the variance of vec
338 *
339 * \tparam vectorT the std::vector type of vec
340 *
341 */
342template <typename valueT>
343valueT vectorVariance( const valueT *vec, ///< [in] the vector
344 size_t sz ///< [in] the size of the vector
345)
346{
347 valueT mean;
348 mean = vectorMean( vec, sz );
349
350 return vectorVariance( vec, sz, mean );
351}
352
353/// Calculate the variance of a vector.
354/**
355 * \returns the variance of vec
356 *
357 * \tparam vectorT the std::vector type of vec
358 *
359 * \overload
360 */
361template <typename vectorT>
362typename vectorT::value_type vectorVariance( const vectorT &vec /**< [in] the vector */ )
363{
364 typename vectorT::value_type mean;
365 mean = vectorMean( vec );
366
367 return vectorVariance( vec, mean );
368}
369
370/// Calculate the sigma-clipped mean of a vector
371/** Performas sigma-clipping relative to the median, removing any values with deviation from the median > sigma.
372 * Continues until either no values are removed, or maxPasses iterations. If maxPasses == 0, then it is ignored.
373 *
374 * \returns the sigma clipped mean of vec
375 *
376 * \tparam vectorT the std::vector type of vec
377 * \tparam sigmaT the type of sigma, which is converted to value_type
378 *
379 */
380template <typename vectorT, typename sigmaT>
381typename vectorT::value_type vectorSigmaMean( const vectorT &vec, ///< [in] the vector (unaltered)
382 const vectorT *weights, ///< [in] [optional] the weights (unaltered)
383 const sigmaT &sigma, /**< [in] the standard deviation threshold to
384 apply. */
385 int &maxPasses /**< [in/out] [optional] the maximum number of
386 sigma-clipping passes. Is set
387 to actual number of passes on
388 return. */
389)
390{
391 vectorT work, wwork;
392
393 typename vectorT::value_type med, var, Vsig, dev;
394
395 bool doWeight = false;
396 if( weights )
397 {
398 if( weights->size() == vec.size() )
399 {
400 doWeight = true;
401 }
402 }
403
404 Vsig = sigma * sigma;
405
406 med = vectorMedian( vec, &work );
407 var = vectorVariance( work, med );
408
409 int nclip;
410 int passes = 0;
411
412 // If weighting, have to synchronize work with weights since work will be
413 // partially sorted by median.
414 if( doWeight )
415 {
416 wwork.resize( vec.size() );
417 for( int i = 0; i < vec.size(); ++i )
418 {
419 work[i] = vec[i];
420 wwork[i] = ( *weights )[i];
421 }
422 }
423
424 while( passes < maxPasses || maxPasses == 0 )
425 {
426 ++passes;
427
428 nclip = 0;
429
430 for( size_t i = 0; i < work.size(); ++i )
431 {
432 dev = pow( work[i] - med, 2 ) / var;
433 if( dev > Vsig )
434 {
435 work.erase( work.begin() + i );
436
437 if( doWeight )
438 wwork.erase( wwork.begin() + i );
439
440 --i;
441 ++nclip;
442 }
443 }
444
445 if( nclip == 0 )
446 break;
447 med = vectorMedian( work );
448 var = vectorVariance( work, med );
449 }
450
452
453 if( doWeight )
454 {
455 return vectorMean( work, wwork );
456 }
457 else
458 {
459 return vectorMean( work );
460 }
461}
462
463/**
464 * \overload
465 */
466template <typename vectorT>
467typename vectorT::value_type
468vectorSigmaMean( const vectorT &vec, ///< [in] the vector (unaltered)
469 typename vectorT::value_type sigma ///< [in] the standard deviation threshold to apply.
470)
471{
472 int maxPasses = 0;
473
474 return vectorSigmaMean( vec, (vectorT *)0, sigma, maxPasses );
475}
476
477/**
478 * \overload
479 */
480template <typename vectorT>
481typename vectorT::value_type
482vectorSigmaMean( const vectorT &vec, ///< [in] the vector (unaltered)
483 const vectorT &weights, ///< [in] [optional] the weights (unaltered)
484 typename vectorT::value_type sigma, ///< [in] the standard deviation threshold to apply.
485 int &maxPasses ///< [in.out] [optional] the maximum number of sigma-clipping passes. Set to actual
486 ///< number of passes on return.
487)
488{
489
490 return vectorSigmaMean( vec, &weights, sigma, maxPasses );
491}
492
493/**
494 * \overload
495 */
496template <typename vectorT>
497typename vectorT::value_type
498vectorSigmaMean( const vectorT &vec, ///< [in] the vector (unaltered)
499 const vectorT &weights, ///< [in] [optional] the weights (unaltered)
500 typename vectorT::value_type sigma ///< [in] the standard deviation threshold to apply.
501)
502{
503 int maxPasses = 0;
504
505 return vectorSigmaMean( vec, &weights, sigma, maxPasses );
506}
507
508/// Subtract a constant value from a vector
509template <typename valueT, typename constT>
510void vectorSub( valueT *vec, ///< [in.out] the vector, each element will have the constant subtracted from it
511 size_t sz, ///< [in] the size of the vector
512 const constT &c ///< [in] the constant to subtract from each element
513)
514{
515 for( size_t n = 0; n < sz; ++n )
516 vec[n] -= c;
517}
518
519/// Subtract a constant value from a vector
520template <typename vecT, typename constT>
521void vectorSub( vecT &vec, ///< [in.out] the vector, each element will have the constant subtracted from it
522 const constT &c ///< [in] the constant to subtract from each element
523)
524{
525 vectorSub( vec.data(), vec.size(), c );
526}
527
528/// Subtract the mean from a vector
529template <typename valueT>
530void vectorMeanSub( valueT *vec, ///< [in.out] the vector, each element will have the mean subtracted from it
531 size_t sz ///< [in] the vector size
532)
533{
534 valueT m = vectorMean( vec, sz );
535 vectorSub( vec, sz, m );
536}
537
538/// Subtract the mean from a vector
539template <typename vecT>
540void vectorMeanSub( vecT &vec /**< [in.out] the vector, each element will have the mean subtracted from it*/ )
541{
542 vectorMeanSub( vec.data(), vec.size() );
543}
544
545/// Subtract the median from a vector
546template <typename vecT>
547void vectorMedianSub( vecT &vec /**< [in.out] the vector, each element will have the median subtracted from it*/ )
548{
549 typename vecT::value_type m = vectorMedian( vec );
550 vectorSub( vec, m );
551}
552
553/// Smooth a vector using the mean in a window specified by its full-width
554template <typename realT>
556 realT *smVec, ///< [out] the smoothed version of the vector. At least as large as \p vec.
557 realT *vec, ///< [in] the input vector, unaltered.
558 size_t vecSize, ///< [in] the size of \p vec
559 int win ///< [in] the full-width of the smoothing window. Should be even. 0 results in a slow memcpy.
560)
561{
562 realT sum;
563 int n;
564 for( int i = 0; i < vecSize; ++i )
565 {
566 int j = i - 0.5 * win;
567 if( j < 0 )
568 j = 0;
569
570 sum = 0;
571 n = 0;
572 while( j <= i + 0.5 * win && j < vecSize )
573 {
574 sum += vec[j];
575 ++n;
576 ++j;
577 }
578
579 smVec[i] = sum / n;
580 }
581
582 return 0;
583}
584
585/// Smooth a vector using the mean in a window specified by its full-width
586/** \overload
587 */
588template <typename realT>
590 std::vector<realT> &smVec, ///< [out] the smoothed version of the vector. Will be resize()-ed.
591 std::vector<realT> &vec, ///< [in] the input vector, unaltered.
592 int win ///< [in] the full-width of the smoothing window. Should be even. 0 results in a slow memcpy.
593)
594{
595 smVec.resize( vec.size() );
596 return vectorSmoothMean( smVec.data(), vec.data(), vec.size(), win );
597}
598
599/// Smooth a vector using the mean in windows specified by their full-widths
600/** You supply a window width for each point. This is useful for, say, logarithmically growing bin sizes in a
601 * PSD.
602 *
603 * \returns 0 on success
604 * \returns -1 but who are we kidding it we don't check for errors
605 *
606 */
607template <typename realT>
609 std::vector<realT> &smVec, ///< [out] the smoothed version of the vector
610 std::vector<realT> &vec, ///< [in] the input vector, unaltered.
611 std::vector<int> &wins, ///< [in] the full-widths of the smoothing windows, same size as vec.
612 bool norm = false ///< [in] if true the output will normalized to have the same integral as the input.
613)
614{
615 smVec = vec;
616
617 realT sum;
618 int n;
619 for( int i = 0; i < vec.size(); ++i )
620 {
621 int j = i - 0.5 * wins[i];
622 if( j < 0 )
623 j = 0;
624
625 sum = 0;
626 n = 0;
627 while( j <= i + 0.5 * wins[i] && j < vec.size() )
628 {
629 sum += vec[j];
630 ++n;
631 ++j;
632 }
633
634 smVec[i] = sum / n;
635 }
636
637 if( norm )
638 {
639 realT sumin = 0, sumout = 0;
640
641 for( int i = 0; i < vec.size(); ++i )
642 {
643 sumin += vec[i];
644 sumout += smVec[i];
645 }
646
647 for( int i = 0; i < vec.size(); ++i )
648 {
649 smVec[i] *= sumin / sumout;
650 }
651 }
652
653 return 0;
654}
655
656/// Smooth a vector using the median in a window specified by its full-width
657template <typename realT>
658int vectorSmoothMedian( std::vector<realT> &smVec, ///< [out] the smoothed version of the vector
659 std::vector<realT> &vec, ///< [in] the input vector, unaltered.
660 int win ///< [in] the full-width of the smoothing window
661)
662{
663 smVec = vec;
664
665 std::vector<realT> tvec;
666 int n;
667 for( int i = 0; i < vec.size(); ++i )
668 {
669 int j = i - 0.5 * win;
670 if( j < 0 )
671 j = 0;
672
673 tvec.clear();
674 while( j <= i + 0.5 * win && j < vec.size() )
675 {
676 tvec.push_back( vec[j] );
677 ++j;
678 }
679
681 }
682
683 return 0;
684}
685
686/// Smooth a vector using the max in a window specified by its full-width
687template <typename realT>
688int vectorSmoothMax( std::vector<realT> &smVec, ///< [out] the smoothed version of the vector
689 std::vector<realT> &vec, ///< [in] the input vector, unaltered.
690 int win ///< [in] the full-width of the smoothing window
691)
692{
693 smVec = vec;
694
695 for( int i = 0; i < vec.size(); ++i )
696 {
697 int j = i - 0.5 * win;
698 if( j < 0 )
699 j = 0;
700
701 smVec[i] = vec[j];
702 ++j;
703 while( j <= i + 0.5 * win && j < vec.size() )
704 {
705 if( vec[j] > smVec[i] )
706 smVec[i] = vec[j];
707 ++j;
708 }
709 }
710
711 return 0;
712}
713
714/// Re-bin a vector by summing (or averaging) in bins of size n points.
715/**
716 * \returns 0 on success
717 * \returns -1 on error
718 *
719 * \tparam vectorT is any vector-like type with resize(), size(), and the operator()[].
720 */
721template <typename vectorT>
723 vectorT &binv, ///< [out] the re-binned vector. will be resized.
724 const vectorT &v, ///< [in] the vector to bin.
725 unsigned n, ///< [in] the size of the bins, in points
726 bool binMean = false ///< [in] [optional] flag controlling whether sums (false) or means (true) are calculated.
727)
728{
729 if( n == 0 )
730 return -1;
731
732 binv.resize( v.size() / n );
733
734 for( size_t i = 0; i < binv.size(); ++i )
735 {
736 binv[i] = 0;
737
738 unsigned j;
739 for( j = 0; j < n; ++j )
740 {
741 if( i * n + j >= v.size() )
742 break;
743
744 binv[i] += v[i * n + j];
745 }
746
747 if( binMean )
748 {
749 if( j > 0 )
750 binv[i] /= j;
751 }
752 }
753
754 return 0;
755}
756
757/// Calculate and accumulate the means of a timeseries in bins of various sizes.
758/** Useful mainly to calculate the variance of the mean as a function of sample size.
759 * The output is a vector of vectors, where each element is a vector which contains the means in the
760 * unique bins of size corresponding to the same index in the in put binSzs vector.
761 *
762 * \returns 0 on success.
763 */
764template <typename vectorT, typename binVectorT>
765int vectorBinMeans( std::vector<vectorT> &means, ///< [out] the means in each distinct bin. Not cleared, but Will be
766 ///< resized with new means appended.
767 binVectorT &binSzs, ///< [in] the bin sizes in which to calculate the means
768 const vectorT &v ///< [in] the input vector to bin .
769)
770{
772
773 means.resize( binSzs.size() );
774
775 for( size_t i = 0; i < binSzs.size(); ++i )
776 {
777 vectorRebin( binv, v, binSzs[i], true );
778
779 means[i].resize( means[i].size() + binv.size() );
780 for( size_t j = 0; j < binv.size(); ++j )
781 means[i][means[i].size() - binv.size() + j] = binv[j];
782 }
783
784 return 0;
785}
786
787/// Convolve (smooth) a vector with a Gaussian.
788/**
789 * \returns 0 on success.
790 * \returns -1 on error.
791 *
792 * \tparam realT is the real floating point type of the data.
793 */
794template <typename realT, typename fwhmT, typename winhwT>
795int vectorGaussConvolve( std::vector<realT> &dataOut, ///< [out] The smoothed data vector. Resized.
796 const std::vector<realT> &dataIn, ///< [in] The data vector to smooth.
797 const std::vector<realT> &scale, ///< [in] The scale vector used to calculate the kernel.
798 const fwhmT fwhm, ///< [in] The FWHM of the Gaussian kernel, same units as scale.
799 const winhwT winhw ///< [in] The window half-width in pixels.
800)
801{
802
803 if( dataIn.size() != scale.size() )
804 return -1;
805
806 realT _fwhm = fwhm;
807 int _winhw = winhw;
808
809 dataOut.resize( dataIn.size() );
810
811 realT sigma = func::fwhm2sigma<realT>( _fwhm );
812
813 for( int i = 0; i < dataIn.size(); ++i )
814 {
815 realT G;
816 realT sum = 0;
817 realT norm = 0;
818 for( int j = i - _winhw; j < i + _winhw; ++j )
819 {
820 if( j < 0 )
821 continue;
822 if( j > dataIn.size() - 1 )
823 continue;
824
825 G = func::gaussian<realT>( scale[j], 0.0, 1.0, scale[i], sigma );
826
827 sum += G * dataIn[j];
828 norm += G;
829 }
830
831 dataOut[i] = sum / norm;
832 }
833
834 return 0;
835}
836
837/// Calculate a cumulative histogram of a vector.
838/** Sorts the vector and sums.
839 *
840 * \retval 0 on success, -1 otherwise.
841 *
842 * \tparam floatT the floating point type of the vector contens.
843 */
844template <typename floatT>
845int vectorCumHist( std::vector<floatT> &svec, ///< [out] Contains the sorted vector.
846 std::vector<floatT> &sum, ///< [out] Contains the cumulative or running sum of the sorted vector
847 std::vector<floatT> &vec ///< [in] The vector to sort and sum.
848)
849{
850 svec = vec;
851
852 std::sort( svec.begin(), svec.end() );
853
854 sum.resize( svec.size() );
855
856 sum[0] = svec[0];
857
858 for( int i = 1; i < svec.size(); ++i )
859 {
860 sum[i] = sum[i - 1] + svec[i];
861 }
862
863 return 0;
864}
865
866/// Calculate a reverse cumulative histogram of a vector.
867/** Reverse-sorts the vector and sums.
868 *
869 * \retval 0 on success, -1 otherwise.
870 *
871 * \tparam floatT the floating point type of the vector contens.
872 */
873template <typename floatT>
875 std::vector<floatT> &svec, ///< [out] Contains the reverse-sorted vector.
876 std::vector<floatT> &sum, ///< [out] Contains the cumulative or running sum of the reverse-sorted vector
877 std::vector<floatT> &vec ///< [in] The vector to reverse-sort and sum.
878)
879{
880 svec = vec;
881
882 std::sort( svec.begin(), svec.end(), std::greater<floatT>() );
883
884 sum.resize( svec.size() );
885
886 sum[0] = svec[0];
887
888 for( int i = 1; i < svec.size(); ++i )
889 {
890 sum[i] = sum[i - 1] + svec[i];
891 }
892
893 return 0;
894}
895
896///@}
897
898} // namespace math
899} // namespace mx
900
901#endif // math_vectorUtils_hpp
Declarations for utilities related to the Gaussian function.
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
std::vector< size_t > vectorSortOrder(std::vector< memberT > const &values)
Return the indices of the vector in sorted order, without altering the vector itself.
void vectorMeanSub(valueT *vec, size_t sz)
Subtract the mean from a vector.
void vectorScale(vectorT &vec, size_t N=0, typename vectorT::value_type scale=0, typename vectorT::value_type offset=0)
Fill in a vector with a regularly spaced scale.
int vectorRebin(vectorT &binv, const vectorT &v, unsigned n, bool binMean=false)
Re-bin a vector by summing (or averaging) in bins of size n points.
vectorT::value_type vectorMedianInPlace(vectorT &vec)
Calculate median of a vector in-place, altering the vector.
vectorT::value_type vectorSigmaMean(const vectorT &vec, const vectorT *weights, const sigmaT &sigma, int &maxPasses)
Calculate the sigma-clipped mean of a vector.
int vectorBinMeans(std::vector< vectorT > &means, binVectorT &binSzs, const vectorT &v)
Calculate and accumulate the means of a timeseries in bins of various sizes.
int vectorGaussConvolve(std::vector< realT > &dataOut, const std::vector< realT > &dataIn, const std::vector< realT > &scale, const fwhmT fwhm, const winhwT winhw)
Convolve (smooth) a vector with a Gaussian.
valueT vectorMean(const valueT *vec, size_t sz)
Calculate the mean of a vector.
void vectorSub(valueT *vec, size_t sz, const constT &c)
Subtract a constant value from a vector.
valueT vectorVariance(const valueT *vec, size_t sz, valueT mean)
Calculate the variance of a vector relative to a supplied mean value.
int vectorCumHistReverse(std::vector< floatT > &svec, std::vector< floatT > &sum, std::vector< floatT > &vec)
Calculate a reverse cumulative histogram of a vector.
void vectorMedianSub(vecT &vec)
Subtract the median from a vector.
vectorT::value_type vectorMedian(const vectorT &vec, vectorT *work=0)
Calculate median of a vector, leaving the vector unaltered.
int vectorCumHist(std::vector< floatT > &svec, std::vector< floatT > &sum, std::vector< floatT > &vec)
Calculate a cumulative histogram of a vector.
int vectorSmoothMean(realT *smVec, realT *vec, size_t vecSize, int win)
Smooth a vector using the mean in a window specified by its full-width.
int vectorSmoothMedian(std::vector< realT > &smVec, std::vector< realT > &vec, int win)
Smooth a vector using the median in a window specified by its full-width.
int vectorSmoothMax(std::vector< realT > &smVec, std::vector< realT > &vec, int win)
Smooth a vector using the max in a window specified by its full-width.
valueT vectorSum(const valueT *vec, size_t sz)
Calculate the sum of a vector.
The mxlib c++ namespace.
Definition mxError.hpp:106