27#ifndef __imCenterRadon_hpp__
28#define __imCenterRadon_hpp__
30#include "../math/vectorUtils.hpp"
31#include "../math/fit/fitGaussian.hpp"
50template <
typename transformT>
54 typedef typename transformT::arithT realT;
94 const int lbuff = transformT::lbuff;
95 const int width = transformT::width;
103 realT startX, startY;
107 for(
int i = 0; i < N; ++i )
110 for(
int j = 0; j < N; ++j )
117 int Nang = 360. / dang + 1;
120#ifdef MX_IMPROC_IMCENTERRADON_OMP
121#pragma omp parallel for
123 for(
int iang = 0; iang < Nang; ++iang )
125 realT ang = iang * dang;
128 kern.resize( width, width );
130 realT cosang = cos( ang * 3.14159 / 180. );
131 realT sinang = sin( ang * 3.14159 / 180. );
135 realT xx = startX + rad * cosang;
136 realT yy = startY + rad * sinang;
143 trans( kern, dx, dy );
144 lineint += ( im.block( i0 - lbuff, j0 - lbuff, width, width ) * kern ).sum();
173 realT
mx, mn, gx, gy;
175 mx = grid.maxCoeff( &gx, &gy );
176 mn = grid.minCoeff();
181 m_fit.setArray( grid.data(), grid.rows(), grid.cols() );
199 template <
typename iosT,
char comment = '#'>
202 char c[] = { comment,
'\0' };
204 ios << c <<
"--------------------------------------\n";
205 ios << c <<
"mx::improc::imCenterRadon Results \n";
206 ios << c <<
"--------------------------------------\n";
209 ios << c <<
"Cost half-width: "
210 << 0.5 * math::func::sigma2fwhm<realT>( sqrt( pow(
m_fit.sigma_x(), 2 ) + pow(
m_fit.sigma_y(), 2 ) ) *
213 ios << c <<
"--------------------------------------\n";
214 ios << c <<
"Setup:\n";
215 ios << c <<
"--------------------------------------\n";
216 ios << c <<
"maxPix: " <<
m_maxPix <<
"\n";
217 ios << c <<
"dPix: " <<
m_dPix <<
"\n";
218 ios << c <<
"minRad: " <<
m_minRad <<
"\n";
219 ios << c <<
"maxRad: " <<
m_maxRad <<
"\n";
220 ios << c <<
"dRad: " <<
m_dRad <<
"\n";
223 ios << c <<
"--------------------------------------\n";
224 ios << c <<
"Fit results:\n";
225 m_fit.dumpReport( ios );
226 ios << c <<
"--------------------------------------\n";
236 template <
char comment = '#'>
239 return dumpResults<std::ostream, comment>( std::cout );
Tools for using the eigen library for image processing.
Eigen::Array< scalarT, -1, -1 > eigenImage
Definition of the eigenImage type, which is an alias for Eigen::Array.
realT rtod(realT q)
Convert from radians to degrees.
Image filters (smoothing, radial profiles, etc.)
A class to find the location of a peak using interpolation.
Find the center of the image of a point source using circular symmetry of the PSF.
int center(realT &x, realT &y, eigenImage< realT > &im, realT x0, realT y0)
Peform the grid search and fit.
realT m_x0
Internal storage of the guess center position.
realT m_peakTol
The tolerance for the peak finding. This is multiplicative with m_dPix.
int fitGrid(realT &x, realT &y, eigenImage< realT > grid)
Fit the transform grid.
iosT & dumpResults(iosT &ios)
Output the results to a stream.
realT m_dRad
The spacing of the radii. Default: 0.1.
realT m_maxRad
The maximum radius to include in the transform. Default: 10.0.
realT m_dPix
The spacing of the points in the grid search. Default: 0.1.
mx::math::fit::fitGaussian2Dgen< realT > m_fit
The fitter for finding the centroid of the grid. You can use this to inspect the details of the fit i...
realT m_minRad
The minimum radius to include in the transform. Default: 1.0.
realT m_angTolPix
The angle tolerance in pixels at the maximum radius, sets the angular step size. Default is 1....
realT m_maxPix
The maximum range of the grid search, the grid will be +/- maxPix. Default: 5.0.
eigenImage< realT > m_grid
The cost grid.
realT m_y0
Internal storage of the guess center position.
std::ostream & dumpResults()
Output the results to std::cout.
Find the peak of an image using interpolation.