mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
imageXCorrDiscrete.hpp
Go to the documentation of this file.
1/** \file imageXCorrDiscrete.hpp
2 * \brief A class to register images using the discrete cross correlation.
3 * \ingroup image_processing_files
4 * \author Jared R. Males (jaredmales@gmail.com)
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2020 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef imageXCorrDiscrete_hpp
28#define imageXCorrDiscrete_hpp
29
30#include "../mxError.hpp"
31#include "../math/fit/fitGaussian.hpp"
32#include "imageUtils.hpp"
33
34namespace mx
35{
36namespace improc
37{
38
39enum class xcorrPeakMethod
40{
41 centroid,
42 gaussfit,
43 interp
44};
45
46/// Find the optimum shift to align two images using the discrete cross correlation.
47/** The reference image must be smaller than the target image. Both the reference image and the section of
48 * target image being analyzed are mean subtracted and variance normalized. An optional mask can be supplied,
49 * which limits the pixels used for the mean and variance calculation.
50 *
51 * Typical usage will be to set the mask, then the reference, then repeatedly call operator() to
52 * determine the shifts for a sequence of imaages. No new heap allocations take place on these calls
53 * to operator(), and the reference image is not re-normalized on each call.
54 *
55 * The shift is reported in pixels such that if the mxlib imageShift function is used
56 * to shift the input image by the negative of the shifts, it will align with the
57 * reference at the center of the array.
58 *
59 * Three peak finding methods are provided. xcorrPeakMethod::centroid uses center of light,
60 * xcorrPeakMethod::centroid uses Gaussian centroiding, and xcorrPeakMethod::interp uses interpolation
61 * to find the peak to a given tolerance.
62 *
63 * \tparam _ccImT is the Eigen-like array type used for image processing. See typedefs.
64 *
65 * \ingroup image_reg
66 */
67template <class _ccImT>
69{
70 public:
71 typedef _ccImT ccImT; ///< the Eigen-like array type used for image processing
72 typedef typename _ccImT::Scalar Scalar; ///< the scalar type of the image type
73
74 protected:
75 public:
76 /** \name Working Memory
77 * @{
78 */
79
80 ccImT m_refIm; ///< The normalized reference image.
81
82 ccImT m_maskIm; ///< Mask image to use, may be needed for proper normalization even if refIm has 0 mask applied.
83
84 bool m_haveMask{ false };
85
86 ccImT m_normIm; ///< The normalized image.
87
88 ccImT m_ccIm; ///< The cross-correlation image
89
90 ccImT m_magIm; ///< The magnified image, used if m_peakMethod == xcorrPeakMethod::interp
91
92 ///@}
93
95
96 int m_maxLag{ 0 }; ///< The maximum lag to consider in the initial cross-correlation.
97
98 Scalar m_tol{ 0.1 }; ///< The tolerance of the interpolated-magnified image, in pixels.
99
100 Scalar m_magSize{ 0 }; ///< Magnified size of the ccIm when using interp. Set as function of m_tol and m_maxLag.
101
102 public:
103 xcorrPeakMethod m_peakMethod{ xcorrPeakMethod::centroid };
104
105 public:
106 /// Default c'tor
108
109 /// Construct seeting maxLag.
110 explicit imageXCorrDiscrete( int maxLag );
111
112 /// Get the current maximum lag
113 /**
114 * \returns the current value of m_maxLag
115 */
116 int maxLag();
117
118 /// Set the maximum lag
119 void maxLag( int ml /**< [in] the new maximum lag */ );
120
121 /// Get the tolerance of the interpolated-magnified image, in pixels.
122 /**
123 * \returns the current value of m_tol.
124 */
125 Scalar tol();
126
127 /// Set the tolerance of the interpolated-magnified image, in pixels.
128 void tol( Scalar nt /**< [in] The new value of the interpolation tolerance. */ );
129
130 /// Set the size of the cross-correlation images.
131 /** This resizes all working memory.
132 *
133 * \returns 0 on success
134 * \returns -1 on error
135 */
136 int resize( int nrows, ///< [in] the number of rows in the images to register
137 int ncols ///< [in] the number of columns in the images to register
138 );
139
140 /// Set the mask image
141 /**
142 * \returns 0 on success
143 * \returns -1 on error
144 */
145 int maskIm( const ccImT &mask /**< [in] the new mask image */ );
146
147 /// Get a reference to the mask image.
148 /**
149 * \returns a const referance to the mask image.
150 */
151 const ccImT &maskIm();
152
153 /// Set the reference image
154 /** Normalizes the reference image by mean subtraction and variance division. Applies
155 * the mask first if supplied.
156 *
157 * \returns 0 on success
158 * \returns -1 on error
159 */
160 int refIm( const ccImT &im0 );
161
162 /// Get a reference to the reference image.
163 /**
164 * \returns a const referent to m_refIm.
165 */
166 const ccImT &refIm();
167
168 /// Get a reference to the normalized image.
169 /**
170 * \returns a const referent to m_normIm.
171 */
172 const ccImT &normIm();
173
174 /// Get a reference to the cross correlation image.
175 /**
176 * \returns a const referent to m_ccIm.
177 */
178 const ccImT &ccIm();
179
180 /// Get a reference to the magnified image.
181 /**
182 * \returns a const referent to m_magIm.
183 */
184 const ccImT &magIm();
185
186 /// Conduct the cross correlation to a specified tolerance
187 /**
188 * \returns 0 on success
189 * \returns -1 on error
190 */
191 template <class imT>
192 int operator()( Scalar &xShift, ///< [out] the x shift of im w.r.t. im0, in pixels
193 Scalar &yShift, ///< [out] the y shift of im w.r.t. im0, in pixels
194 const imT &im ///< [in] the image to cross-correlate with the reference
195 );
196};
197
198template <class ccImT>
202
203template <class ccImT>
205{
206 maxLag( mL );
207}
208
209template <class ccImT>
211{
212 return m_maxLag;
213}
214
215template <class ccImT>
217{
218 m_maxLag = ml;
219 tol( m_tol );
220}
221
222template <class ccImT>
223typename ccImT::Scalar imageXCorrDiscrete<ccImT>::tol()
224{
225 return m_tol;
226}
227
228template <class ccImT>
230{
231
232 m_magSize = ceil( ( ( 2. * m_maxLag + 1 ) - 1.0 ) / nt ) + 1;
233
234 Scalar mag = ( m_magSize - 1.0 ) / ( ( 2. * m_maxLag + 1 ) - 1.0 );
235
236 m_tol = 1.0 / mag;
237}
238
239template <class ccImT>
241{
242 m_maskIm = mask;
243 m_haveMask = true;
244
245 return 0;
246}
247
248template <class ccImT>
250{
251 return m_maskIm;
252}
253
254template <class ccImT>
256{
257 ccImT im0;
258 if( m_haveMask )
259 {
260 if( im.rows() != m_maskIm.rows() && im.cols() != m_maskIm.cols() )
261 {
262 mxError( "imageXCorFit::setReference", MXE_SIZEERR, "reference and mask are not the same size" );
263 return -1;
264 }
265
266 im0 = im * m_maskIm;
267 }
268 else
269 {
270 im0 = im;
271 }
272
273 Scalar m = imageMean( im0 );
274 Scalar v = imageVariance( im0, m );
275 m_refIm = ( im0 - m ) / sqrt( v );
276
277 return 0;
278}
279
280template <class ccImT>
282{
283 return m_refIm;
284}
285
286template <class ccImT>
288{
289 return m_normIm;
290}
291
292template <class ccImT>
294{
295 return m_ccIm;
296}
297
298template <class ccImT>
300{
301 return m_magIm;
302}
303
304template <class ccImT>
305template <class imT>
306int imageXCorrDiscrete<ccImT>::operator()( Scalar &xShift, Scalar &yShift, const imT &im )
307{
308 if( im.rows() <= m_refIm.rows() )
309 {
310 mxError( "imageXCorrDiscrete", MXE_SIZEERR, "reference must be smaller than target image (rows)" );
311 return -1;
312 }
313
314 if( im.cols() <= m_refIm.cols() )
315 {
316 mxError( "imageXCorrDiscrete", MXE_SIZEERR, "reference must be smaller than target image (cols)" );
317 return -1;
318 }
319 // 16/4 15/4 16/3 15/3
320 int maxLag_r = ( im.rows() - m_refIm.rows() ); // 6 5 6 6
321 int maxLag_c = ( im.cols() - m_refIm.cols() );
322
323 if( maxLag_r > m_maxLag && m_maxLag != 0 )
324 maxLag_r = m_maxLag;
325 if( maxLag_c > m_maxLag && m_maxLag != 0 )
326 maxLag_c = m_maxLag;
327
328 m_ccIm.resize( 2 * maxLag_r + 1, 2 * maxLag_c + 1 );
329
330 for( int rL = -maxLag_r; rL <= maxLag_r; ++rL )
331 {
332 for( int cL = -maxLag_c; cL <= maxLag_c; ++cL )
333 {
334 // 16/4 15/4 16/3 15/3
335 int r0 = 0.5 * im.rows() + rL - 0.5 * m_refIm.rows(); // 0-15 0-13 0-14 0-14
336 int c0 = 0.5 * im.cols() + cL - 0.5 * m_refIm.cols();
337
338 if( m_haveMask )
339 {
340 m_normIm = im.block( r0, c0, m_refIm.rows(), m_refIm.cols() ) * m_maskIm;
341 }
342 else
343 {
344 m_normIm = im.block( r0, c0, m_refIm.rows(), m_refIm.cols() );
345 }
346
347 Scalar m = imageMean( m_normIm );
348 Scalar sv = sqrt( imageVariance( m_normIm, m ) );
349 if( sv <= 0 )
350 {
351 m_ccIm( maxLag_r + rL, maxLag_c + cL ) = 0;
352 }
353 else
354 {
355 m_normIm = ( m_normIm - m ) / sv;
356 m_ccIm( maxLag_r + rL, maxLag_c + cL ) = ( m_normIm * m_refIm ).sum();
357 // ds9Interface ds9( m_normIm, 1);
358 }
359 }
360 }
361
362 if( m_peakMethod == xcorrPeakMethod::gaussfit )
363 {
364 int xLag0, yLag0;
365 Scalar pk = m_ccIm.maxCoeff( &xLag0, &yLag0 );
366 Scalar mn = m_ccIm.minCoeff();
367 m_fitter.setArray( m_ccIm.data(), m_ccIm.rows(), m_ccIm.cols() );
368 m_fitter.setGuess( mn, pk, xLag0, yLag0, 0.2 * m_ccIm.rows(), 0.2 * m_ccIm.cols(), 0 );
369 m_fitter.fit();
370
371 xShift = m_fitter.x0() - maxLag_r;
372 yShift = m_fitter.y0() - maxLag_c;
373 }
374 else if( m_peakMethod == xcorrPeakMethod::interp )
375 {
376 m_magIm.resize( m_magSize, m_magSize );
377 imageMagnify( m_magIm, m_ccIm, cubicConvolTransform<Scalar>() );
378 int x, y;
379 m_magIm.maxCoeff( &x, &y );
380 xShift = x * m_tol - maxLag_r;
381 yShift = y * m_tol - maxLag_c;
382 }
383 else
384 {
385 Scalar x, y;
386 imageCenterOfLight( x, y, m_ccIm );
387 xShift = x - maxLag_r;
388 yShift = y - maxLag_c;
389 }
390
391 return 0;
392}
393
394} // namespace improc
395} // namespace mx
396
397#endif // imageXCorrDiscrete_hpp
Find the optimum shift to align two images using the discrete cross correlation.
ccImT m_normIm
The normalized image.
_ccImT::Scalar Scalar
the scalar type of the image type
const ccImT & refIm()
Get a reference to the reference image.
int m_maxLag
The maximum lag to consider in the initial cross-correlation.
ccImT m_maskIm
Mask image to use, may be needed for proper normalization even if refIm has 0 mask applied.
ccImT m_magIm
The magnified image, used if m_peakMethod == xcorrPeakMethod::interp.
int maxLag()
Get the current maximum lag.
ccImT m_ccIm
The cross-correlation image.
Scalar m_tol
The tolerance of the interpolated-magnified image, in pixels.
Scalar m_magSize
Magnified size of the ccIm when using interp. Set as function of m_tol and m_maxLag.
_ccImT ccImT
the Eigen-like array type used for image processing
ccImT m_refIm
The normalized reference image.
Scalar tol()
Get the tolerance of the interpolated-magnified image, in pixels.
int operator()(Scalar &xShift, Scalar &yShift, const imT &im)
Conduct the cross correlation to a specified tolerance.
const ccImT & maskIm()
Get a reference to the mask image.
const ccImT & magIm()
Get a reference to the magnified image.
const ccImT & normIm()
Get a reference to the normalized image.
int resize(int nrows, int ncols)
Set the size of the cross-correlation images.
const ccImT & ccIm()
Get a reference to the cross correlation image.
Class to manage fitting a 2D Gaussian to data via the levmarInterface.
xcorrPeakMethod
Methods for finding the cross-correlation peak.
void imageMagnify(arrOutT &transim, const arrInT &im, transformT trans)
Magnify an image.
calcT imageVariance(imageT &im, calcT mn)
Calculate the variance of an image given its mean.
int imageCenterOfLight(typename imageT::Scalar &x, typename imageT::Scalar &y, const imageT &im)
Calculate the center of light of an image.
calcT imageMean(imageT &im)
Calculate the mean value of an image.
Header for the image processing utilities.
The mxlib c++ namespace.
Definition mxError.hpp:106
Transformation by cubic convolution interpolation.