27#ifndef fitGaussian_hpp
28#define fitGaussian_hpp
33#include "../../mxError.hpp"
35#include "../func/gaussian.hpp"
36#include "../constants.hpp"
38#include "../../improc/eigenImage.hpp"
56template <
typename _realT>
57struct gaussian1D_fitter;
63template <
typename _realT>
68 static const int nparams = 4;
70 static void func( realT *p, realT *
hx,
int m,
int n,
void *adata )
74 realT G0 = arr->G0( p );
75 realT G = arr->G( p );
76 realT x0 = arr->x0( p );
77 realT sigma = arr->sigma( p );
83 for(
int i = 0;
i < arr->
m_nx; ++
i )
92 for(
int i = 0;
i < arr->
m_nx; ++
i )
96 hx[
i] = func::gaussian<realT>(
i, G0, G, x0, sigma ) - arr->
m_data[
i];
104 for(
int i = 0;
i < arr->
m_nx; ++
i )
111 for(
int i = 0;
i < arr->
m_nx; ++
i )
113 hx[
i] = func::gaussian<realT>(
i, G0, G, x0, sigma ) - arr->
m_data[
i];
143template <
typename _realT>
156 this->allocate_params( arr.nparams() );
180 this->allocate_params( arr.nparams() );
192 arr.G0( this->p, G0 );
194 arr.x0( this->p, x0 );
195 arr.sigma( this->p, sigma );
208 void setArray( realT *data, realT *coords,
int nx )
231 return arr.G0( this->p );
237 return arr.G( this->p );
243 return arr.x0( this->p );
251 return arr.sigma( this->p );
265template <
typename _realT>
266struct gaussian2D_sym_fitter;
269template <
typename _realT>
270struct gaussian2D_gen_fitter;
272template <
typename _realT>
273struct gaussian2D_gen_fitter_bgfixed;
300template <
typename fitterT>
305 typedef typename fitterT::realT realT;
313 if( fitterT::maxNparams == 5 )
321 this->allocate_params( arr.nparams() );
346 arr.setFixed( G0, G, x0, y0, sigma_x, sigma_y, theta );
347 this->allocate_params( arr.nparams() );
360 arr.setFixed( G0, G, x0, y0, sigma, sigma, sigma );
361 this->allocate_params( arr.nparams() );
374 arr.G0( this->p, G0 );
376 arr.x0( this->p, x0 );
377 arr.y0( this->p, y0 );
378 arr.sigma( this->p, sigma );
392 arr.G0( this->p, G0 );
394 arr.x0( this->p, x0 );
395 arr.y0( this->p, y0 );
396 arr.sigma_x( this->p, sigma_x );
397 arr.sigma_y( this->p, sigma_y );
398 arr.theta( this->p, theta );
429 for(
int j = 0;
j < nx; ++
j )
431 for(
int i = 0;
i < ny; ++
i )
444 fitter.paramNormalizer( &arr, this->p, 1 );
448 fitter.paramNormalizer( &arr, this->p, -1 );
450 &arr, this->init_p, -1 );
461 return arr.G0( this->p );
467 return arr.G( this->p );
473 return arr.x0( this->p );
479 return arr.y0( this->p );
489 return arr.sigma( this->p );
503 return arr.sigma_x( this->p );
509 return arr.sigma_y( this->p );
515 return arr.theta( this->p );
525template <
typename _realT>
530 static const int maxNparams = 5;
532 static void func( realT *p, realT *
hx,
int m,
int n,
void *adata )
540 for(
int j = 0;
j < arr->
ny;
j++ )
542 for(
int i = 0;
i < arr->
nx;
i++ )
546 hx[
idx_dat] = func::gaussian2D<realT>(
i,
j, p[0], p[1], p[2], p[3], p[4] ) - arr->data[
idx_mat];
564template <
typename _realT>
569 static const int maxNparams = 7;
571 static void func( realT *p, realT *
hx,
int m,
int n,
void *adata )
577 realT G0 = arr->G0( p );
578 realT G = arr->G( p );
579 realT x0 = arr->x0( p );
580 realT y0 = arr->y0( p );
581 realT a = arr->a( p );
582 realT b = arr->b( p );
583 realT c = arr->c( p );
586 if( a * c - b * b <= 0 || a <= 0 || c <= 0 || a + c <= 2 *
fabs( b ) )
590 if( arr->
mask ==
nullptr )
594 for(
int j = 0;
j < arr->
ny; ++
j )
596 for(
int i = 0;
i < arr->
ny; ++
i )
606 for(
int j = 0;
j < arr->
ny; ++
j )
608 for(
int i = 0;
i < arr->
ny; ++
i )
619 for(
int j = 0;
j < arr->
ny; ++
j )
621 for(
int i = 0;
i < arr->
ny; ++
i )
639 if( arr->
mask ==
nullptr )
643 for(
int j = 0;
j < arr->
ny; ++
j )
645 for(
int i = 0;
i < arr->
nx; ++
i )
657 for(
int j = 0;
j < arr->
ny; ++
j )
659 for(
int i = 0;
i < arr->
nx; ++
i )
672 for(
int j = 0;
j < arr->
ny; ++
j )
674 for(
int i = 0;
i < arr->
nx; ++
i )
699 realT
sx = arr->sigma_x( p );
700 realT
sy = arr->sigma_y( p );
701 realT
th = arr->theta( p );
714 realT
na = arr->a( p );
715 realT
nb = arr->b( p );
716 realT
nc = arr->c( p );
719 arr->sigma_x( p,
sx );
720 arr->sigma_y( p,
sy );
735template <
typename realT>
741template <
typename realT>
749template <
typename realT>
767 for(
int i = 0;
i < 2 * maxWidth + 1; ++
i )
769 for(
int j = 0;
j < 2 * maxWidth + 1; ++
j )
771 if(
im( (
int)(
xg0 - maxWidth +
i ), (
int)(
yg0 - maxWidth +
j ) ) >
Ag )
773 Ag =
im( (
int)(
xg0 - maxWidth +
i ), (
int)(
yg0 - maxWidth +
j ) );
797 if(
im( (
int)(
xg +
j * c ), (
int)(
yg +
j *
s ) ) <= 0.5 *
Ag )
833extern template int guessGauss2D_ang<float>(
float &
Ag,
846extern template int guessGauss2D_ang<double>(
double &
Ag,
Wrapper for a native array to pass to levmarInterface, with 1D Gaussian details.
Wrapper for a native array to pass to levmarInterface, with 2D Gaussian details.
Class to manage fitting a 1D Gaussian to data via the levmarInterface.
realT G()
Get the peak scaling.
realT sigma()
Return sigma.
void setArray(realT *data, realT *coords, int nx)
Set the data aray.
realT G0()
Get the current value of G0, the constant.
void setGuess(realT G0, realT G, realT x0, realT sigma)
Set the initial guess for a symmetric Gaussian.
void setFixed(bool G0, bool G, bool x0, bool sigma)
Set whether each parameter is fixed.
realT x0()
Get the center x-coordinate.
void setArray(realT *data, int nx)
Set the data aray.
Class to manage fitting a 2D Gaussian to data via the levmarInterface.
realT x0()
Get the center x-coordinate.
void setGuess(realT G0, realT G, realT x0, realT y0, realT sigma)
Set the initial guess for a symmetric Gaussian.
void setFixed(bool G0, bool G, bool x0, bool y0, bool sigma_x, bool sigma_y, bool theta)
Set whether each parameter is fixed.
realT theta()
Return the orientation of the long axis.
realT y0()
Get the center y-coordinate.
array2FitGaussian2D< realT > arr
realT sigma()
Return the width parameter.
void setArray(realT *data, int nx, int ny)
Set the data aray.
realT G0()
Get the current value of G0, the constant.
void setGuess(realT G0, realT G, realT x0, realT y0, realT sigma_x, realT sigma_y, realT theta)
Set the initial guess for the general Gaussian.
realT fwhm()
Return the full-width at half maximum.
realT sigma_y()
Return the width parameter on the short axis.
void setFixed(bool G0, bool G, bool x0, bool y0, bool sigma)
Set whether each parameter is fixed.
realT G()
Get the peak scaling.
realT sigma_x()
Return the width parameter on the long axis.
void setArray(realT *data, int nx, int ny, realT *mask)
Set the data aray, with a mask.
A templatized interface to the levmar package.
int fit()
Perform the fit.
Eigen::Array< scalarT, -1, -1 > eigenImage
Definition of the eigenImage type, which is an alias for Eigen::Array.
int guessGauss2D_ang(realT &Ag, realT &xg, realT &yg, realT &xFWHM, realT &yFWHM, realT &angG, mx::improc::eigenImage< realT > &im, realT maxWidth, realT widthWidth, realT nAngs, realT xg0, realT yg0)
Form an estimate of the parameters of an elliptical Gaussian from a 2D image.
floatT sigma2fwhm(floatT sig)
Convert from Gaussian width parameter to FWHM.
void gaussian2D_gen2rot(realT &sigma_x, realT &sigma_y, realT &theta, const realT a, const realT b, const realT c)
Convert from (a,b,c) to ( , , ) for the elliptical Gaussian.
void gaussian2D_rot2gen(realT &a, realT &b, realT &c, const realT sigma_x, const realT sigma_y, const realT theta)
Convert from ( , , ) to (a,b,c) for the elliptical Gaussian.
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
A c++ interface to the templatized levmar minimization routines..
Wrapper for a native array to pass to levmarInterface, with !D Gaussian details.
size_t m_nx
X dimension of the array.
realT * m_mask
Pointer to the (optional) mask array. Any 0 pixels are excluded from the fit.
realT * m_coords
Pointer to the array of x values (optional)
realT * m_data
///< Pointer to the array of y values
void setFixed(bool G0, bool G, bool x0, bool sigma)
Set whether each parameter is fixed.
Wrapper for a native array to pass to levmarInterface, with 2D Gaussian details.
size_t ny
Y dimension of the array.
size_t nx
X dimension of the array.
realT * data
Pointer to the array.
realT * mask
Pointer to the (optional) mask array. Any 0 pixels are excluded from the fit.
Wrapper for a native array to pass to levmarInterface.
size_t ny
X dimension of the array.
size_t nx
Pointer to the array.
levmarInterface fitter structure for the symmetric Gaussian.
levmarInterface fitter structure for the general elliptical Gaussian.
Alias for the fitGaussian1D type fitting the gaussian.
void paramNormalizer(array2FitGaussian2D< realT > *arr, realT *p, int dir)
Does nothing in this case.