mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
fitGaussian.hpp
Go to the documentation of this file.
1/** \file fitGaussian.hpp
2 * \author Jared R. Males
3 * \brief Tools for fitting Gaussians to data.
4 * \ingroup fitting_files
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2015, 2016, 2017 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef fitGaussian_hpp
28#define fitGaussian_hpp
29
32
33#include "../../mxError.hpp"
34#include "levmarInterface.hpp"
35#include "../func/gaussian.hpp"
36#include "../constants.hpp"
37
38#include "../../improc/eigenImage.hpp"
39
40namespace mx
41{
42namespace math
43{
44namespace fit
45{
46
47/** \defgroup gaussian_peak_fit Gaussians
48 * \brief Fitting Gaussians to data.
49 *
50 * The Gaussian function is fit to data.
51 *
52 * \ingroup peak_fit
53 */
54
55// forward
56template <typename _realT>
57struct gaussian1D_fitter;
58
59///\ref levmarInterface fitter structure for the symmetric Gaussian.
60/** \ingroup gaussian_peak_fit
61 *
62 */
63template <typename _realT>
65{
66 typedef _realT realT;
67
68 static const int nparams = 4;
69
70 static void func( realT *p, realT *hx, int m, int n, void *adata )
71 {
73
74 realT G0 = arr->G0( p );
75 realT G = arr->G( p );
76 realT x0 = arr->x0( p );
77 realT sigma = arr->sigma( p );
78
79 if( arr->m_mask )
80 {
81 if( arr->m_coords )
82 {
83 for( int i = 0; i < arr->m_nx; ++i )
84 {
85 if( arr->m_mask[i] == 0 )
86 continue;
87 hx[i] = func::gaussian<realT>( arr->m_coords[i], G0, G, x0, sigma ) - arr->m_data[i];
88 }
89 }
90 else
91 {
92 for( int i = 0; i < arr->m_nx; ++i )
93 {
94 if( arr->m_mask[i] == 0 )
95 continue;
96 hx[i] = func::gaussian<realT>( i, G0, G, x0, sigma ) - arr->m_data[i];
97 }
98 }
99 }
100 else
101 {
102 if( arr->m_coords )
103 {
104 for( int i = 0; i < arr->m_nx; ++i )
105 {
106 hx[i] = func::gaussian<realT>( arr->m_coords[i], G0, G, x0, sigma ) - arr->m_data[i];
107 }
108 }
109 else
110 {
111 for( int i = 0; i < arr->m_nx; ++i )
112 {
113 hx[i] = func::gaussian<realT>( i, G0, G, x0, sigma ) - arr->m_data[i];
114 }
115 }
116 }
117 }
118};
119
120extern template struct gaussian1D_fitter<float>;
121extern template struct gaussian1D_fitter<double>;
122
123/// Class to manage fitting a 1D Gaussian to data via the \ref levmarInterface
124/** Fits the following function to the data:
125 * \f$ G(x) = G_0 + G\exp[-(0.5/\sigma^2)((x-x_0)^2)]\f$
126 *
127 * Can use a vector of x-coordinates, or use the array index as the position corresponding to each y-value.
128 * A mask can be provided, where any 0 entries cause that position to be ignored.
129 *
130 * Any of the parameters can be fixed, and not included in the fit.
131 *
132 * \code
133 *
134 * \endcode
135 *
136 *
137 * \tparam fitterT a type meeting the above requirements.
138 *
139 * \ingroup gaussian_peak_fit
140 *
141 */
142// template<typename fitterT>
143template <typename _realT>
145{
146
147 public:
148 typedef _realT realT;
150
151 protected:
153
154 void initialize()
155 {
156 this->allocate_params( arr.nparams() );
157 this->adata = &arr;
158 }
159
160 public:
162 {
163 this->initialize();
164 }
165
167 {
168 }
169
170 /// Set whether each parameter is fixed.
171 /** Sets the parameter indices appropriately.
172 */
173 void setFixed( bool G0, ///< [in] if true, then G0 will be not be part of the fit
174 bool G, ///< [in] if true, then G will be not be part of the fit
175 bool x0, ///< [in] if true, then x0 will be not be part of the fit
176 bool sigma ///< [in] if true, then sigma will be not be part of the fit
177 )
178 {
179 arr.setFixed( G0, G, x0, sigma );
180 this->allocate_params( arr.nparams() );
181 }
182
183 /// Set the initial guess for a symmetric Gaussian.
184 /** Also works for the general case, setting the same width in both directions.
185 */
186 void setGuess( realT G0, ///< [in] the constant background level
187 realT G, ///< [in] the peak scaling
188 realT x0, ///< [in] the center x-coordinate
189 realT sigma ///< [in] the width parameter
190 )
191 {
192 arr.G0( this->p, G0 );
193 arr.G( this->p, G );
194 arr.x0( this->p, x0 );
195 arr.sigma( this->p, sigma );
196 }
197
198 /// Set the data aray.
199 void setArray( realT *data, int nx )
200 {
201 arr.m_data = data;
202 arr.m_nx = nx;
203
204 this->n = nx;
205 }
206
207 /// Set the data aray.
208 void setArray( realT *data, realT *coords, int nx )
209 {
210 arr.m_data = data;
211 arr.m_coords = coords;
212 arr.m_nx = nx;
213
214 this->n = nx;
215 }
216
217 /// Do the fit.
218 int fit()
219 {
221
223 }
224
225 /// Get the current value of G0, the constant.
226 /**
227 * \returns the current value of G0, which is p[0].
228 */
229 realT G0()
230 {
231 return arr.G0( this->p );
232 }
233
234 /// Get the peak scaling.
235 realT G()
236 {
237 return arr.G( this->p );
238 }
239
240 /// Get the center x-coordinate
241 realT x0()
242 {
243 return arr.x0( this->p );
244 }
245
246 /// Return sigma
247 /**
248 */
249 realT sigma()
250 {
251 return arr.sigma( this->p );
252 }
253};
254
255extern template class fitGaussian1D<float>;
256extern template class fitGaussian1D<double>;
257
258/// Alias for the fitGaussian1D type fitting the gaussian.
259/** \ingroup gaussian_peak_fit
260 */
261// template<typename realT>
262// using fitGaussian1D = mx::math::fit::fitGaussian1D<mx::math::fit::gaussian1D_fitter<realT>>;
263
264// forward
265template <typename _realT>
266struct gaussian2D_sym_fitter;
267
268// forward
269template <typename _realT>
270struct gaussian2D_gen_fitter;
271
272template <typename _realT>
273struct gaussian2D_gen_fitter_bgfixed;
274
275/// Class to manage fitting a 2D Gaussian to data via the \ref levmarInterface
276/** Can fit either the symmetric Gaussian, or the rotated asymmetric Gaussian. Individual parameters can be fixed,
277 * except in the asymmetric case \f$\sigma_x, \sigma_y, \theta\f$ must currently be fixed together.
278 *
279 * In addition to the requirements on fitterT specified by \ref levmarInterface
280 * this class also requires the following in fitterT
281 * \code
282 * static const int nparams = 7; //where the number 7 is replaced by the number of parameters that fitterT expects to
283 * fit.
284 *
285 * void paramNormalizer( array2FitGaussian2D * arr,
286 * realT *,
287 * int); //A function which converts from input parameters to fitting parameters. May do nothing.
288 *
289 * \endcode
290 *
291 *
292 * \tparam fitterT a type meeting the above requirements.
293 *
294 * \ingroup gaussian_peak_fit
295 *
296 * \test Scenario: Verify direction and accuracy of various image shifts \ref tests_improc_imageTransforms_imageShift
297 * "[test doc]"
298 *
299 */
300template <typename fitterT>
302{
303
304 public:
305 typedef typename fitterT::realT realT;
306
308 arr; /**< Data array to pass to the levmar library.
309 Contains the actual data plus the parameters if fixed.*/
310
311 void initialize()
312 {
313 if( fitterT::maxNparams == 5 )
314 {
315 arr.setSymmetric();
316 }
317 else
318 {
319 arr.setGeneral();
320 }
321 this->allocate_params( arr.nparams() );
322 this->adata = &arr;
323 }
324
326 {
327 initialize();
328 }
329
330 ~fitGaussian2D()
331 {
332 }
333
334 /// Set whether each parameter is fixed.
335 /** Sets the parameter indices appropriately.
336 */
337 void setFixed( bool G0, ///< [in] if true, then G0 will be not be part of the fit
338 bool G, ///< [in] if true, then G will be not be part of the fit
339 bool x0, ///< [in] if true, then x0 will be not be part of the fit
340 bool y0, ///< [in] if true, then y0 will be not be part of the fit
341 bool sigma_x, ///< [in] if true, then sigma_x will be not be part of the fit
342 bool sigma_y, ///< [in] if true, then sigma_y will be not be part of the fit
343 bool theta ///< [in] if true, then theta will be not be part of the fit
344 )
345 {
346 arr.setFixed( G0, G, x0, y0, sigma_x, sigma_y, theta );
347 this->allocate_params( arr.nparams() );
348 }
349
350 /// Set whether each parameter is fixed.
351 /** Sets the parameter indices appropriately.
352 */
353 void setFixed( bool G0, ///< [in] if true, then G0 will be not be part of the fit
354 bool G, ///< [in] if true, then G will be not be part of the fit
355 bool x0, ///< [in] if true, then x0 will be not be part of the fit
356 bool y0, ///< [in] if true, then y0 will be not be part of the fit
357 bool sigma ///< [in] if true, then sigma will be not be part of the fit
358 )
359 {
360 arr.setFixed( G0, G, x0, y0, sigma, sigma, sigma );
361 this->allocate_params( arr.nparams() );
362 }
363
364 /// Set the initial guess for a symmetric Gaussian.
365 /** Also works for the general case, setting the same width in both directions.
366 */
367 void setGuess( realT G0, ///< [in] the constant background level
368 realT G, ///< [in] the peak scaling
369 realT x0, ///< [in] the center x-coordinate
370 realT y0, ///< [in] the center y-coordinate
371 realT sigma ///< [in] the width parameter
372 )
373 {
374 arr.G0( this->p, G0 );
375 arr.G( this->p, G );
376 arr.x0( this->p, x0 );
377 arr.y0( this->p, y0 );
378 arr.sigma( this->p, sigma );
379 }
380
381 /// Set the initial guess for the general Gaussian.
382 void setGuess( realT G0, ///< [in] the constant background level
383 realT G, ///< [in] the peak scaling
384 realT x0, ///< [in] the center x-coordinate
385 realT y0, ///< [in] the center y-coordinate
386 realT sigma_x, ///< [in] the width parameter in the rotated x-direction (the long axis)
387 realT sigma_y, ///< [in] the width parameter in the rotated y-direction
388 realT theta ///< [in] the angle of the long axis (always sigma_x)
389 )
390 {
391
392 arr.G0( this->p, G0 );
393 arr.G( this->p, G );
394 arr.x0( this->p, x0 );
395 arr.y0( this->p, y0 );
396 arr.sigma_x( this->p, sigma_x );
397 arr.sigma_y( this->p, sigma_y );
398 arr.theta( this->p, theta );
399 }
400
401 /// Set the data aray.
402 void setArray( realT *data, ///< [in] The 2D array of data to fit.
403 int nx, ///< [in] the x size of the data
404 int ny ///< [in] the y size of the data
405 )
406 {
407 arr.data = data;
408 arr.nx = nx;
409 arr.ny = ny;
410 arr.mask = nullptr;
411 this->n = nx * ny;
412 }
413
414 /// Set the data aray, with a mask.
416 realT *data, ///< [in] The 2D array of data to fit.
417 int nx, ///< [in] the x size of the data
418 int ny, ///< [in] the y size of the data
419 realT *mask ///< [in] Array of same size as data. Any 0 pixels in this array will be excluded from the fit.
420 )
421 {
422 arr.data = data;
423 arr.nx = nx;
424 arr.ny = ny;
425 arr.mask = mask;
426
427 this->n = 0;
428 int idx_mat;
429 for( int j = 0; j < nx; ++j )
430 {
431 for( int i = 0; i < ny; ++i )
432 {
433 idx_mat = i + j * nx;
434
435 this->n += arr.mask[idx_mat];
436 }
437 }
438 }
439
440 /// Do the fit.
441 int fit()
442 {
443 fitterT fitter;
444 fitter.paramNormalizer( &arr, this->p, 1 );
445
447
448 fitter.paramNormalizer( &arr, this->p, -1 );
449 fitter.paramNormalizer(
450 &arr, this->init_p, -1 ); // The normalized version is stored, so fix it before possible output.
451
452 return 0;
453 }
454
455 /// Get the current value of G0, the constant.
456 /**
457 * \returns the current value of G0.
458 */
459 realT G0()
460 {
461 return arr.G0( this->p );
462 }
463
464 /// Get the peak scaling.
465 realT G()
466 {
467 return arr.G( this->p );
468 }
469
470 /// Get the center x-coordinate
471 realT x0()
472 {
473 return arr.x0( this->p );
474 }
475
476 /// Get the center y-coordinate
477 realT y0()
478 {
479 return arr.y0( this->p );
480 }
481
482 /// Return the width parameter
483 /** As described for the symmetric Gaussian.
484 *
485 * For the general Gaussian, this returns \f$ \sigma = \sqrt{ \sigma_x^2 + \sigma_y^2} \f$.
486 */
487 realT sigma()
488 {
489 return arr.sigma( this->p );
490 }
491
492 /// Return the full-width at half maximum
493 /** This is a simple scaling of the sigma() result
494 */
495 realT fwhm()
496 {
497 return func::sigma2fwhm( arr.sigma( this->p ) );
498 }
499
500 /// Return the width parameter on the long axis.
501 realT sigma_x()
502 {
503 return arr.sigma_x( this->p );
504 }
505
506 /// Return the width parameter on the short axis.
507 realT sigma_y()
508 {
509 return arr.sigma_y( this->p );
510 }
511
512 /// Return the orientation of the long axis.
513 realT theta()
514 {
515 return arr.theta( this->p );
516 }
517};
518
519///\ref levmarInterface fitter structure for the symmetric Gaussian.
520/** \ingroup gaussian_peak_fit
521 *
522 * \test Scenario: Verify direction and accuracy of various image shifts \ref tests_improc_imageTransforms_imageShift
523 * "[test doc]"
524 */
525template <typename _realT>
527{
528 typedef _realT realT;
529
530 static const int maxNparams = 5;
531
532 static void func( realT *p, realT *hx, int m, int n, void *adata )
533 {
534 array2Fit<realT> *arr = (array2Fit<realT> *)adata;
535
536 size_t idx_mat, idx_dat;
537
538 idx_dat = 0;
539
540 for( int j = 0; j < arr->ny; j++ )
541 {
542 for( int i = 0; i < arr->nx; i++ )
543 {
544 idx_mat = i + j * arr->nx;
545
546 hx[idx_dat] = func::gaussian2D<realT>( i, j, p[0], p[1], p[2], p[3], p[4] ) - arr->data[idx_mat];
547
548 idx_dat++;
549 }
550 }
551 }
552
553 /// Does nothing in this case.
554 void paramNormalizer( array2FitGaussian2D<realT> *arr, realT *p, int dir )
555 {
556 return;
557 }
558};
559
560///\ref levmarInterface fitter structure for the general elliptical Gaussian.
561/** \ingroup gaussian_peak_fit
562 *
563 */
564template <typename _realT>
566{
567 typedef _realT realT;
568
569 static const int maxNparams = 7;
570
571 static void func( realT *p, realT *hx, int m, int n, void *adata )
572 {
574
575 size_t idx_mat, idx_dat;
576
577 realT G0 = arr->G0( p ); // 0
578 realT G = arr->G( p ); // 1
579 realT x0 = arr->x0( p ); // 2
580 realT y0 = arr->y0( p ); // 3
581 realT a = arr->a( p ); // 4
582 realT b = arr->b( p ); // 5
583 realT c = arr->c( p ); // 6
584
585 // Check for positive-definiteness of {{a b}{b c}}
586 if( a * c - b * b <= 0 || a <= 0 || c <= 0 || a + c <= 2 * fabs( b ) )
587 {
588 idx_dat = 0;
589 // If it's not positive-definite, then we just fill in with the value of the image itself.
590 if( arr->mask == nullptr )
591 {
592 if( arr->weights == nullptr)
593 {
594 for( int j = 0; j < arr->ny; ++j )
595 {
596 for( int i = 0; i < arr->ny; ++i )
597 {
598 idx_mat = i + j * arr->nx;
599 hx[idx_dat] = arr->data[idx_mat];
600 ++idx_dat;
601 }
602 }
603 }
604 else
605 {
606 for( int j = 0; j < arr->ny; ++j )
607 {
608 for( int i = 0; i < arr->ny; ++i )
609 {
610 idx_mat = i + j * arr->nx;
611 hx[idx_dat] = arr->data[idx_mat] * arr->weights[idx_mat];
612 ++idx_dat;
613 }
614 }
615 }
616 }
617 else
618 {
619 for( int j = 0; j < arr->ny; ++j )
620 {
621 for( int i = 0; i < arr->ny; ++i )
622 {
623 idx_mat = i + j * arr->nx;
624 if( arr->mask[idx_mat] == 0 )
625 {
626 continue;
627 }
628 hx[idx_dat] = arr->data[idx_mat];
629 ++idx_dat;
630 }
631 }
632 }
633 return;
634 }
635
636 // If positive-definite, now actually calculate
637 idx_dat = 0;
638
639 if( arr->mask == nullptr )
640 {
641 if(arr->weights == nullptr)
642 {
643 for( int j = 0; j < arr->ny; ++j )
644 {
645 for( int i = 0; i < arr->nx; ++i )
646 {
647 idx_mat = i + j * arr->nx;
648
649 hx[idx_dat] = func::gaussian2D<realT>( i, j, G0, G, x0, y0, a, b, c ) - arr->data[idx_mat];
650
651 ++idx_dat;
652 }
653 }
654 }
655 else
656 {
657 for( int j = 0; j < arr->ny; ++j )
658 {
659 for( int i = 0; i < arr->nx; ++i )
660 {
661 idx_mat = i + j * arr->nx;
662
663 hx[idx_dat] = (func::gaussian2D<realT>( i, j, G0, G, x0, y0, a, b, c ) - arr->data[idx_mat])*arr->weights[idx_mat];
664
665 ++idx_dat;
666 }
667 }
668 }
669 }
670 else
671 {
672 for( int j = 0; j < arr->ny; ++j )
673 {
674 for( int i = 0; i < arr->nx; ++i )
675 {
676 idx_mat = i + j * arr->nx;
677
678 if( arr->mask[idx_mat] == 0 )
679 {
680 continue;
681 }
682 else
683 {
684 hx[idx_dat] = func::gaussian2D<realT>( i, j, G0, G, x0, y0, a, b, c ) - arr->data[idx_mat];
685
686 ++idx_dat;
687 }
688 }
689 }
690 }
691 }
692
693 void paramNormalizer( array2FitGaussian2D<realT> *arr, realT *p, int dir )
694 {
695 // Prepare for fit
696 if( dir == 1 )
697 {
698 realT na, nb, nc;
699 realT sx = arr->sigma_x( p );
700 realT sy = arr->sigma_y( p );
701 realT th = arr->theta( p );
702
704 arr->a( p, na );
705 arr->b( p, nb );
706 arr->c( p, nc );
707 return;
708 }
709
710 // Convert after fit
711 if( dir == -1 )
712 {
713 realT sx, sy, th;
714 realT na = arr->a( p );
715 realT nb = arr->b( p );
716 realT nc = arr->c( p );
718
719 arr->sigma_x( p, sx );
720 arr->sigma_y( p, sy );
721 arr->theta( p, th );
722 return;
723 }
724 }
725};
726
731
732/// Alias for the fitGaussian2D type fitting the symmetric gaussian.
733/** \ingroup gaussian_peak_fit
734 */
735template <typename realT>
737
738/// Alias for the fitGaussian2D type fitting the general elliptical gaussian.
739/** \ingroup gaussian_peak_fit
740 */
741template <typename realT>
743
744/// Form an estimate of the parameters of an elliptical Gaussian from a 2D image.
745/** Note that this assumes that there is no constant value (i.e. it is zero-ed).
746 *
747 * \ingroup gaussian_peak_fit
748 */
749template <typename realT>
750int guessGauss2D_ang( realT &Ag, ///< [out] estimate of the peak
751 realT &xg, ///< [out] estimate of the x-coordinate of the peak
752 realT &yg, ///< [out] estimate of the y-coordinate of the peak
753 realT &xFWHM, ///< [out] estimate of the x-FWHM
754 realT &yFWHM, ///< [out] estimate of the y-FWHM
755 realT &angG, ///< [out] estimate of the angle of the ellipse
756 mx::improc::eigenImage<realT> &im, ///< [in] the image with an elliptical gaussian
757 realT maxWidth, ///< [in] the width of the box to search for the maximum
758 realT widthWidth, ///< [in] the radius of the circle to search for the widths
759 realT nAngs, ///< [in] the number of angles at which to search for the widths
760 realT xg0, ///< [in] an initial guess at the x-coordinate of the peak
761 realT yg0 ///< [in] an initial guess at the y-coordinate of the peak
762)
763{
764 xg = xg0;
765 yg = yg0;
766 Ag = im( (int)xg, (int)yg );
767 for( int i = 0; i < 2 * maxWidth + 1; ++i )
768 {
769 for( int j = 0; j < 2 * maxWidth + 1; ++j )
770 {
771 if( im( (int)( xg0 - maxWidth + i ), (int)( yg0 - maxWidth + j ) ) > Ag )
772 {
773 Ag = im( (int)( xg0 - maxWidth + i ), (int)( yg0 - maxWidth + j ) );
774 xg = xg0 - maxWidth + i;
775 yg = yg0 - maxWidth + j;
776 }
777 }
778 }
779
780 realT dAng = math::two_pi<realT>() / nAngs;
781 // std::vector<realT> dist(nAngs);
782
783 realT c, s;
784
785 realT maxD = 0;
786 int maxDidx = 0;
787 realT minD = widthWidth;
788 int minDidx = 0;
789
790 for( int i = 0; i < nAngs; ++i )
791 {
792 c = cos( i * dAng );
793 s = sin( i * dAng );
794
795 for( int j = 0; j < widthWidth; ++j )
796 {
797 if( im( (int)( xg + j * c ), (int)( yg + j * s ) ) <= 0.5 * Ag )
798 {
799 // dist[i] = j;
800
801 if( j > maxD )
802 {
803 maxD = j;
804 maxDidx = i;
805 }
806
807 if( j < minD )
808 {
809 minD = j;
810 minDidx = i;
811 }
812 break;
813 }
814 }
815 }
816
817 // Take minang and move it by 90 degrees
818 realT minang = fmod( minDidx * dAng - 0.5 * math::pi<realT>(), math::pi<realT>() );
819 if( minang < 0 )
821
822 realT maxang = fmod( maxDidx * dAng, math::pi<realT>() );
823
824 // Now average
825 angG = 0.5 * ( minang + maxang );
826
827 xFWHM = 2 * maxD;
828 yFWHM = 2 * minD;
829
830 return 0; ///\returns 0 if successful
831}
832
833extern template int guessGauss2D_ang<float>( float &Ag,
834 float &xg,
835 float &yg,
836 float &xFWHM,
837 float &yFWHM,
838 float &angG,
840 float maxWidth,
841 float widthWidth,
842 float nAngs,
843 float xg0,
844 float yg0 );
845
846extern template int guessGauss2D_ang<double>( double &Ag,
847 double &xg,
848 double &yg,
849 double &xFWHM,
850 double &yFWHM,
851 double &angG,
853 double maxWidth,
854 double widthWidth,
855 double nAngs,
856 double xg0,
857 double yg0 );
858
859} // namespace fit
860} // namespace math
861
862} // namespace mx
863
864#endif // fitGaussian_hpp
Wrapper for a native array to pass to levmarInterface, with 1D Gaussian details.
Wrapper for a native array to pass to levmarInterface, with 2D Gaussian details.
Class to manage fitting a 1D Gaussian to data via the levmarInterface.
realT G()
Get the peak scaling.
realT sigma()
Return sigma.
void setArray(realT *data, realT *coords, int nx)
Set the data aray.
realT G0()
Get the current value of G0, the constant.
void setGuess(realT G0, realT G, realT x0, realT sigma)
Set the initial guess for a symmetric Gaussian.
void setFixed(bool G0, bool G, bool x0, bool sigma)
Set whether each parameter is fixed.
realT x0()
Get the center x-coordinate.
void setArray(realT *data, int nx)
Set the data aray.
Class to manage fitting a 2D Gaussian to data via the levmarInterface.
realT x0()
Get the center x-coordinate.
void setGuess(realT G0, realT G, realT x0, realT y0, realT sigma)
Set the initial guess for a symmetric Gaussian.
void setFixed(bool G0, bool G, bool x0, bool y0, bool sigma_x, bool sigma_y, bool theta)
Set whether each parameter is fixed.
realT theta()
Return the orientation of the long axis.
realT y0()
Get the center y-coordinate.
array2FitGaussian2D< realT > arr
realT sigma()
Return the width parameter.
void setArray(realT *data, int nx, int ny)
Set the data aray.
realT G0()
Get the current value of G0, the constant.
void setGuess(realT G0, realT G, realT x0, realT y0, realT sigma_x, realT sigma_y, realT theta)
Set the initial guess for the general Gaussian.
realT fwhm()
Return the full-width at half maximum.
realT sigma_y()
Return the width parameter on the short axis.
void setFixed(bool G0, bool G, bool x0, bool y0, bool sigma)
Set whether each parameter is fixed.
realT G()
Get the peak scaling.
realT sigma_x()
Return the width parameter on the long axis.
void setArray(realT *data, int nx, int ny, realT *mask)
Set the data aray, with a mask.
A templatized interface to the levmar package.
Eigen::Array< scalarT, -1, -1 > eigenImage
Definition of the eigenImage type, which is an alias for Eigen::Array.
int guessGauss2D_ang(realT &Ag, realT &xg, realT &yg, realT &xFWHM, realT &yFWHM, realT &angG, mx::improc::eigenImage< realT > &im, realT maxWidth, realT widthWidth, realT nAngs, realT xg0, realT yg0)
Form an estimate of the parameters of an elliptical Gaussian from a 2D image.
floatT sigma2fwhm(floatT sig)
Convert from Gaussian width parameter to FWHM.
Definition gaussian.hpp:79
void gaussian2D_gen2rot(realT &sigma_x, realT &sigma_y, realT &theta, const realT a, const realT b, const realT c)
Convert from (a,b,c) to ( , , ) for the elliptical Gaussian.
Definition gaussian.hpp:246
void gaussian2D_rot2gen(realT &a, realT &b, realT &c, const realT sigma_x, const realT sigma_y, const realT theta)
Convert from ( , , ) to (a,b,c) for the elliptical Gaussian.
Definition gaussian.hpp:328
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
A c++ interface to the templatized levmar minimization routines..
The mxlib c++ namespace.
Definition mxError.hpp:106
Wrapper for a native array to pass to levmarInterface, with !D Gaussian details.
size_t m_nx
X dimension of the array.
realT * m_mask
Pointer to the (optional) mask array. Any 0 pixels are excluded from the fit.
realT * m_coords
Pointer to the array of x values (optional)
realT * m_data
///< Pointer to the array of y values
void setFixed(bool G0, bool G, bool x0, bool sigma)
Set whether each parameter is fixed.
Wrapper for a native array to pass to levmarInterface, with 2D Gaussian details.
size_t ny
Y dimension of the array.
size_t nx
X dimension of the array.
realT * data
Pointer to the array.
realT * mask
Pointer to the (optional) mask array. Any 0 pixels are excluded from the fit.
Wrapper for a native array to pass to levmarInterface.
size_t ny
X dimension of the array.
size_t nx
Pointer to the array.
levmarInterface fitter structure for the symmetric Gaussian.
levmarInterface fitter structure for the general elliptical Gaussian.
Alias for the fitGaussian1D type fitting the gaussian.
void paramNormalizer(array2FitGaussian2D< realT > *arr, realT *p, int dir)
Does nothing in this case.