27#ifndef imageXCorrFFT_hpp
28#define imageXCorrFFT_hpp
30#include "../mxError.hpp"
31#include "../mxException.hpp"
32#include "../math/ft/fftT.hpp"
33#include "../math/ft/mftT.hpp"
34#include "../math/ft/ftUtils.hpp"
35#include "../math/ft/fftwEnvironment.hpp"
37#include "../math/fit/fitGaussian.hpp"
80template <
class _realImageT>
86 typedef typename _realImageT::Scalar
realT;
95 typedef realT fftOutT;
522 template <
class im0T,
class imT>
532template <
class realImageT>
538template <
class realImageT>
544template <
class realImageT>
550template <
class realImageT>
555 mxError(
"imageXCorrFFT::padFactor", MXE_INVALIDARG,
"padding factor can't be less than 1" );
556 return MXE_INVALIDARG;
559 if( m_rows > 0 && m_cols > 0 )
561 return resize( m_rows, m_cols, os );
570template <
class realImageT>
576template <
class realImageT>
582template <
class realImageT>
588template <
class realImageT>
592 if( m_rows == nrows && m_cols == ncols && m_padFactor == padFactor )
599 mxError(
"imageXCorrFFT::resize", MXE_INVALIDARG,
"padding factor can't be less than 1" );
600 return MXE_INVALIDARG;
607 m_padFactor = padFactor;
615 if( m_rows == 0 || m_cols == 0 )
617 m_ftIm0.resize( 0, 0 );
618 m_ftWork.resize( 0, 0 );
620 m_ftWorkIn.resize( 0, 0 );
624 m_ccIm.resize( 0, 0 );
625 m_ftWorkPadded.resize( 0, 0 );
626 m_mtWorkPadded.resize( 0, 0 );
627 m_ftWorkPaddedOut.resize( 0, 0 );
634 m_ftIm0.resize( m_rows, m_cols );
636 m_ftWork.resize( m_rows, m_cols );
638 m_ftWorkIn.resize( m_rows, m_cols );
642 m_ftIm0.resize( (
int)( 0.5 * m_rows ) + 1, m_cols );
644 m_ftWork.resize( (
int)( 0.5 * m_rows ) + 1, m_cols );
651 m_rowsPadded = ceil( m_rows * m_padFactor );
652 m_colsPadded = ceil( m_cols * m_padFactor );
654 m_padFactorR =
static_cast<realT>( m_rowsPadded ) /
static_cast<realT>( m_rows );
655 m_padFactorC =
static_cast<realT>( m_colsPadded ) /
static_cast<realT>( m_cols );
657 m_ccIm.resize( m_rowsPadded, m_colsPadded );
661 m_ftWorkPadded.resize( m_rowsPadded, m_colsPadded );
662 m_ftWorkPaddedOut.resize( m_rowsPadded, m_colsPadded );
666 m_ftWorkPadded.resize( (
int)( 0.5 * m_rowsPadded ) + 1, m_colsPadded );
668 if( m_peakMethod == xcorrPeakMethod::mftOversamp )
670 m_ftWorkPaddedOut.resize( m_rowsPadded, m_colsPadded );
674 m_ftWorkPaddedOut.resize( 0, 0 );
679 if( m_peakMethod == xcorrPeakMethod::mftOversamp )
681 m_mtWorkPadded.resize( m_rowsPadded, m_colsPadded );
685 m_mtWorkPadded.resize( 0, 0 );
693template <
class realImageT>
696 return resize( nrows, ncols, m_padFactor );
699template <
class realImageT>
703 m_haveRefMask =
true;
710template <
class realImageT>
716template <
class realImageT>
719 return m_haveRefMask;
722template <
class realImageT>
731template <
class realImageT>
737template <
class realImageT>
743template <
class realImageT>
747 m_haveRefWindow =
true;
754template <
class realImageT>
760template <
class realImageT>
763 return m_haveRefWindow;
766template <
class realImageT>
775template <
class realImageT>
781template <
class realImageT>
787template <
class realImageT>
790 if( no != m_normalize )
797template <
class realImageT>
803template <
class realImageT>
811 if( im.rows() != m_refMaskIm.rows() && im.cols() != m_refMaskIm.cols() )
813 mxError(
"imageXCorrFFT::refIm", MXE_SIZEERR,
"reference and reference mask are not the same size" );
820 realT m = imageMean<realT>( im, m_refMaskIm );
821 realT v = imageVariance<realT>( im, m, m_refMaskIm );
822 im0 = ( ( im - m ) * m_refMaskIm ) / sqrt( v );
826 im0 = im * m_refMaskIm;
834 realT m = imageMean<realT>( im );
835 realT v = imageVariance<realT>( im, m );
836 im0 = ( im - m ) / sqrt( v );
845 if( m_haveRefWindow )
847 if( im0.rows() != m_refWinIm.rows() && im.cols() != m_refWinIm.cols() )
849 mxError(
"imageXCorrFFT::refIm", MXE_SIZEERR,
"reference and reference window are not the same size" );
863 resize( im0.rows(), im0.cols(), padFactor );
866 imageShiftWP( im0, m_refIm, 0.5 * m_rows + 1, 0.5 * m_cols + 1 );
871 m_ftWork = im0.template cast<complexT>();
873 m_fft_fwd( m_ftIm0.data(), m_ftWork.data() );
875 m_fft_fwd( m_ftIm0.data(), im0.data() );
879 for(
int c = 0; c < m_ftIm0.cols(); ++c )
881 for(
int r = 0; r < m_ftIm0.rows(); ++r )
883 complexT val = std::conj( m_ftIm0( r, c ) );
884 val /= ( m_rows * m_cols );
885 m_ftIm0( r, c ) = val;
895 operator()( m_refX0, m_refY0, m_refIm );
902template <
class realImageT>
905 return refIm( im, m_padFactor );
908template <
class realImageT>
914template <
class realImageT>
920template <
class realImageT>
927template <
class realImageT>
933template <
class realImageT>
939template <
class realImageT>
944 m_magSize = ceil( ( ( 2. * m_maxLag + 1 ) - 1.0 ) / nt ) + 1;
946 m_mag = ( m_magSize - 1.0 ) / ( ( 2. * m_maxLag + 1 ) - 1.0 );
948 if( m_refIm.rows() != m_rows || m_refIm.cols() != m_cols || m_rows == 0 || m_cols == 0 )
954 operator()( m_refX0, m_refY0, m_refIm );
957template <
class realImageT>
962 if( xpm == xcorrPeakMethod::mftOversamp )
967 if( m_refIm.rows() != m_rows || m_refIm.cols() != m_cols || m_rows == 0 || m_cols == 0 )
975 operator()( m_refX0, m_refY0, m_refIm );
978template <
class realImageT>
984template <
class realImageT>
990template <
class realImageT>
996template <
class realImageT>
1002template <
class realImageT>
1008template <
class realImageT>
1014template <
class realImageT>
1020template <
class realImageT>
1030 realT pk = m_ccIm.maxCoeff( &xLag0, &yLag0 );
1031 realT mn = m_ccIm.minCoeff();
1033 if( xLag0 - m_maxLag < 0 )
1037 if( xLag0 + 2 * m_maxLag + 1 >= m_ccIm.rows() )
1039 m_maxLag = ( m_ccIm.rows() - 1 - xLag0 ) / 2;
1041 if( yLag0 - m_maxLag < 0 )
1045 if( yLag0 + 2 * m_maxLag + 1 >= m_ccIm.cols() )
1047 m_maxLag = ( m_ccIm.cols() - 1 - yLag0 ) / 2;
1050 realT x0 = xLag0 - m_maxLag;
1051 realT y0 = yLag0 - m_maxLag;
1053 if( m_peakMethod == xcorrPeakMethod::gaussFit )
1055 m_magIm = m_ccIm.block( x0, y0, 2 * m_maxLag + 1, 2 * m_maxLag + 1 );
1057 m_fitter.setArray( m_magIm.data(), m_magIm.rows(), m_magIm.cols() );
1058 m_magIm.maxCoeff( &xLag0, &yLag0 );
1060 m_fitter.setGuess( mn, pk - mn, m_maxLag, m_maxLag, 3, 3, 0 );
1063 x0 = ( m_fitter.x0() + x0 );
1064 y0 = ( m_fitter.y0() + y0 );
1066 else if( m_peakMethod == xcorrPeakMethod::interpPeak )
1069 m_magIm.resize( m_magSize, m_magSize );
1072 m_ccIm.block( x0, y0, 2 * m_maxLag + 1, 2 * m_maxLag + 1 ),
1075 m_magIm.maxCoeff( &x, &y );
1076 x0 = ( x * ( 1.0 / m_mag ) + x0 );
1077 y0 = ( y * ( 1.0 / m_mag ) + y0 );
1079 else if( m_peakMethod == xcorrPeakMethod::centerOfLight )
1083 m_magIm = m_ccIm.block( x0, y0, 2 * m_maxLag + 1, 2 * m_maxLag + 1 );
1084 m_magIm -= m_magIm.minCoeff();
1091 else if( m_peakMethod == xcorrPeakMethod::mftOversamp )
1094 m_ccIm.maxCoeff( &x, &y );
1096 if( m_refX0 == 0 && m_refY0 == 0 )
1103 x = x / m_padFactorR - m_refX0;
1104 y = y / m_padFactorC - m_refY0;
1106 realT mag = 1.0 / m_tol;
1108 realT tmagR = mag * m_padFactorR;
1109 realT tmagC = mag * m_padFactorC;
1111 realT shiftx0 = -1 * ( m_refX0 * m_padFactorR ) * ( mag - 1 ) - x * tmagR;
1112 realT shifty0 = -1 * ( m_refY0 * m_padFactorC ) * ( mag - 1 ) - y * tmagC;
1118 m_mft_bwd( m_ftWorkPaddedOut, m_ftWorkPadded );
1122 m_mtWorkPadded.resize( m_rowsPadded, m_colsPadded );
1123 m_mtWorkPadded.setZero();
1126 m_mft_bwd( m_ftWorkPaddedOut, m_mtWorkPadded );
1130 m_magIm = m_ftWorkPaddedOut.real();
1133 m_magIm.maxCoeff( &xf, &yf );
1135 xShift = x + ( xf - m_refX0 * m_padFactorR ) / tmagR;
1136 yShift = y + ( yf - m_refY0 * m_padFactorC ) / tmagC;
1141 else if( m_peakMethod == xcorrPeakMethod::none )
1144 m_ccIm.maxCoeff( &x, &y );
1154 xShift = x0 / m_padFactorR - m_refX0;
1155 yShift = y0 / m_padFactorC - m_refY0;
1158template <
class realImageT>
1164 mxThrowException(
err::invalidconfig,
"imageXCorrFFT",
"reference image is not valid" );
1167 if( im.rows() != m_rows )
1169 mxThrowException(
err::sizeerr,
"imageXCorrFFT",
"image must be same size as reference (rows)" );
1172 if( im.cols() != m_cols )
1174 mxThrowException(
err::sizeerr,
"imageXCorrFFT",
"image must be same size as reference (rows)" );
1182 realT m = imageMean<realT>( im, m_maskIm );
1183 realT v = imageVariance<realT>( im, m, m_maskIm );
1185 m_normIm = ( im - m ) * m_maskIm / sqrt( v );
1189 m_normIm = im * m_maskIm;
1197 realT m = imageMean<realT>( m_normIm );
1198 realT v = imageVariance<realT>( m_normIm, m );
1199 m_normIm = ( im - m ) / sqrt( v );
1209 m_normIm *= m_winIm;
1213 m_ftWorkIn = m_normIm.template cast<complexT>();
1215 m_fft_fwd( m_ftWork.data(), m_ftWorkIn.data() );
1217 m_fft_fwd( m_ftWork.data(), m_normIm.data() );
1222 m_ftWork *= m_ftIm0;
1224 m_ftWorkPadded.setZero();
1230 m_fft_bwd( m_ftWorkPaddedOut.data(), m_ftWorkPadded.data() );
1232 m_ccIm = m_ftWorkPaddedOut.real();
1238 m_fft_bwd( m_ccIm, m_ftWorkPadded );
1242 findPeak( xShift, yShift );
1247template <
class realImageT>
1248template <
class im0T,
class imT>
1251 setReference( im0 );
1252 return operator()( xShift, yShift, im );
mxException for invalid config settings
mxException for a size error
Find the optimum shift to align two images using the FFT cross correlation.
realT padFactor()
Get the padding factor.
int m_cols
The number of columns in the images.
realImageT m_refACIm
The auto-correlation image of the reference.
int m_rowsPadded
The number of rows in the padded CC.
int colsPadded()
Get the number of rows in the padded cross-correlation.
eigenImage< complexT > complexArrayT
Complex eigen array type with Scalar==complexT.
int m_maxLag
The maximum lag to consider in the initial cross-correlation. Default is 5.
complexArrayT m_mtWorkPadded
Working memory for the MFT for xcorrPeakMethod::mftOversamp.
bool haveMask()
Get the value of the haveMask flag.
bool haveWindow()
Get the value of the haveWindow flag.
int m_rows
The number of rows in the images.
math::ft::fftT< fftOutT, fftInT, 2 > m_fft_fwd
FFT object for the forward transform.
const realImageT & maskIm()
Get a reference to the mask image.
const realImageT & refIm()
Get a reference to the reference image.
realImageT m_refIm
The normalized reference image.
bool haveRefMask()
Get the value of the haveRefMask flag.
int resize(int nrows, int ncols, realT padFactor)
Set the size of the cross-correlation problem based on input image size.
int maxLag()
Get the current maximum lag.
realImageT m_magIm
The magnified image, used if m_peakMethod == xcorrPeakMethod::interpPeak.
std::complex< realT > complexT
Complex floating point type.
realT m_padFactor
The padding factor for the CC.
bool m_haveMask
Flag indicating that a mask has been provided.
complexArrayT m_ftWorkPadded
Working memory for the padded inverse FFT input.
complexArrayT m_ftIm0
Working memory for the FT of the reference image.
complexArrayT m_ftWork
Working memory for the FFT.
const realImageT & refWinIm()
Get a reference to the reference window image.
bool haveRefWindow()
Get the value of the haveRefWindow flag.
complexArrayT m_ftWorkIn
Working memory for the FFT input.
math::ft::mftT< complexT, complexT, 2 > m_mft_bwd
const realImageT & refACIm()
Get a reference to the reference auto-correlation image.
const realImageT & ccIm()
Get a reference to the cross correlation image.
complexArrayT m_ftWorkPaddedOut
Working memory for the FFT and MFT output.
int m_colsPadded
The number of columns in the padded CC.
int rowsPadded()
Get the number of rows in the padded cross-correlation.
realT refX0()
Get the x-shift of the reference image to itself.
imageXCorrFFT()
Default c'tor.
bool refValid()
Get the value of the reference valid flag.
math::ft::fftT< fftInT, fftOutT, 2 > m_fft_bwd
FFT object for the backward transform.
bool normalize()
Get the current value of the normalize flag.
realImageT m_refWinIm
Window image to use for the reference.
realT tol()
Get the tolerance of the interpolated-magnified image, in pixels.
int operator()(realT &xShift, realT &yShift, const imT &im)
Conduct the cross correlation to a specified tolerance.
const realImageT & refMaskIm()
Get a reference to the reference mask image.
bool m_haveRefWindow
Flag indicating that a window has been provided for the reference.
const realImageT & magIm()
Get a reference to the magnified image.
realT refY0()
Get the y-shift of the reference image to itself.
_realImageT::Scalar realT
the scalar type of the image type
bool m_haveRefMask
Flag indicating that a referece mask has been provided.
realImageT m_ccIm
The cross-correlation image.
realImageT m_winIm
Window image for the target image.
realImageT m_normIm
The normalized image.
int rows()
Get the number of rows in the input images.
bool m_haveWindow
Flag indicating that a window has been provided.
const realImageT & winIm()
Get a reference to the window image.
const realImageT & normIm()
Get a reference to the normalized image.
xcorrPeakMethod m_peakMethod
The peak finding method to use.
void findPeak(realT &xShift, realT &yShift)
int cols()
Get the number of columns in the input images.
_realImageT realImageT
the Eigen-like array type used for image processing
Class to manage fitting a 2D Gaussian to data via the levmarInterface.
Tools for using the eigen library for image processing.
Eigen::Array< scalarT, -1, -1 > eigenImage
Definition of the eigenImage type, which is an alias for Eigen::Array.
void augmentR2CFFTOutput(eigenArrOutT &aout, eigenArrInT &ain)
void padR2CFFTOutput(eigenArrOutT &aout, eigenArrInT &ain)
Add padding to the output of a real-to-complex (R2C) FFT.
void padC2CFFTOutput(eigenArrOutT &aout, eigenArrInT &ain)
Add padding to the output of a complex-to-complex (C2C) FFT.
@ backward
Specifies the backward transform.
@ forward
Specifies the forward transform.
xcorrPeakMethod
Methods for finding the cross-correlation peak.
int imageCenterOfLight(typename imageT::Scalar &x, typename imageT::Scalar &y, const imageT &im)
Calculate the center of light of an image.
Header for the image processing utilities.
CRTP base class to register images.