mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
linearPredictor.hpp
Go to the documentation of this file.
1/** \file linearPredictor.hpp
2 * \brief Working with linear prediction.
3 *
4 * \author Jared R. Males (jaredmales@gmail.com)
5 *
6 * \ingroup signal_processing_files
7 *
8 */
9
10//***********************************************************************//
11// Copyright 2015, 2016, 2017 Jared R. Males (jaredmales@gmail.com)
12//
13// This file is part of mxlib.
14//
15// mxlib is free software: you can redistribute it and/or modify
16// it under the terms of the GNU General Public License as published by
17// the Free Software Foundation, either version 3 of the License, or
18// (at your option) any later version.
19//
20// mxlib is distributed in the hope that it will be useful,
21// but WITHOUT ANY WARRANTY; without even the implied warranty of
22// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23// GNU General Public License for more details.
24//
25// You should have received a copy of the GNU General Public License
26// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
27//***********************************************************************//
28
29#ifndef linearPredictor_hpp
30#define linearPredictor_hpp
31
32#include <vector>
33#include <complex>
34
35#include "../math/constants.hpp"
36#include "../math/eigenLapack.hpp"
37
38#include "levinsonRecursion.hpp"
39
40namespace mx
41{
42namespace sigproc
43{
44
45/// A class to support linear prediction.
46/** \ingroup signal_processing
47 *
48 * \todo document linearPredictor
49 */
50template <typename _realT>
52{
53 typedef _realT realT;
54
55 std::vector<realT> m_c;
56
57 realT _setCondition{ 0 };
58 realT _actCondition{ 0 };
59 int _nRejected{ 0 };
60
61 /// Calculate the LP coefficients given an autocorrelation.
62 /** If condition==0 then the levinson recursion is used.
63 * Otherwise, SVD pseudo-inversion is used with the given condition number.
64 */
65 int calcCoefficients( const std::vector<realT> &ac,
66 size_t Nc,
67 size_t Npred = 1,
68 realT condition = 0
69 )
70 {
71 return calcCoefficients( ac.data(), ac.size(), Nc, Npred, condition);
72 }
73
74 int calcCoefficients( const realT *ac,
75 size_t acSz,
76 size_t Nc,
77 size_t Npred = 1,
78 realT condition = 0
79 )
80 {
81
82 if( condition == 0 )
83 {
84 return calcCoefficientsLevinson( ac, acSz, Nc, Npred );
85 }
86
87 Eigen::Array<realT, -1, -1> Rmat, Rvec, PInv, LPcoeff;
88
89 Rmat.resize( Nc, Nc );
90 Rvec.resize( 1, Nc );
91
92 for( int i = 0; i < Nc && i < acSz; ++i )
93 {
94 for( int j = 0; j < Nc && i < acSz; ++j )
95 {
96 Rmat( i, j ) = ac[abs( i - j )];
97 }
98
99 Rvec( 0, i ) = ac[i + Npred];
100 }
101
102 realT tmpCond = condition;
103
104 _setCondition = condition;
105 math::eigenPseudoInverse( PInv, tmpCond, _nRejected, Rmat, condition );
106
107 _actCondition = tmpCond;
108
109 m_c.resize(Nc);
110 Eigen::Map<Eigen::Array<realT,-1,-1>> cmap(m_c.data(), 1, m_c.size());
111 cmap = Rvec.matrix() * PInv.matrix();
112
113 return 0;
114 }
115
116 int calcCoefficientsLevinson( const std::vector<realT> &ac, /**< [in] The autocorrelation, at least
117 Nc+Npred in length */
118 size_t Nc, /**< [in] The number of LP coefficients desired */
119 size_t Npred = 1 /**< [in] [optional] The prediction length,
120 default is 1 */
121 )
122 {
123 return calcCoefficientsLevinson( ac.data(), ac.size(), Nc, Npred );
124 }
125
126 int calcCoefficientsLevinson( const realT *ac, /**< [in] The autocorrelation, at least Nc+Npred in length */
127 size_t acSz, /**< [in] The length of the autocorrelation */
128 size_t Nc, /**< [in] The number of LP coefficients desired */
129 unsigned Npred = 1 /**< [in] [optional] The prediction length, default is 1 */
130 )
131 {
132 if( acSz < Nc + Npred )
133 {
134 std::string msg = "too many coefficients for size and prediction length\n";
135 msg += " acSz = " + std::to_string( acSz ) + "\n";
136 msg += " Nc = " + std::to_string( Nc ) + "\n";
137 msg += " Npred = " + std::to_string( Npred ) + "\n";
138 mxThrowException( err::invalidarg, "linearPredictor::calcCoefficientsLevinson", msg );
139 }
140
141 std::vector<realT> r, x, y;
142
143 r.resize( 2. * Nc - 1 );
144 m_c.resize( Nc );
145 y.resize( Nc );
146
147 for( size_t i = 0; i < Nc; ++i )
148 {
149 r[i] = ac[Nc - i - 1]; // this runs from Nc-1 to 0
150 }
151
152 for( size_t i = Nc; i < 2 * Nc - 1; ++i )
153 {
154 r[i] = ac[i - Nc + 1]; // this runs from 1 to Nc-1
155 }
156
157 for( size_t i = 0; i < Nc; ++i )
158 {
159 y[i] = ac[i + Npred]; // this runs from Npred to Nc-1 + Npred
160 }
161
162 levinsonRecursion( r.data(), m_c.data(), y.data(), Nc );
163
164 return 0;
165 }
166
167 realT c( size_t i )
168 {
169 return m_c[i];
170 }
171
172 size_t Nc()
173 {
174 return m_c.size();
175 }
176
177 realT predict( std::vector<realT> &hist, int idx )
178 {
179 realT x = 0;
180
181 if( idx < m_c.size() )
182 {
183 return x;
184 }
185
186 for( int i = 0; i < m_c.size(); ++i )
187 {
188 x += m_c[i] * hist[idx - i];
189 }
190
191 return x;
192 }
193
194 realT spectralResponse( realT f, realT fs )
195 {
196 int n = m_c.size();
197
198 std::complex<realT> He = 0;
199 for( int j = 0; j < n; ++j )
200 {
201 realT s = ( j + 1.0 ) * math::two_pi<realT>();
202 He += m_c[j] * exp( s * std::complex<realT>( 0, -1.0 ) * f / fs );
203 }
204
205 realT one = 1.0;
206 return std::norm( one / ( one - He ) );
207 }
208};
209
210} // namespace sigproc
211} // namespace mx
212#endif // linearPredictor_hpp
mxException for invalid arguments
int eigenPseudoInverse(Eigen::Array< dataT, -1, -1 > &PInv, dataT &condition, int &nRejected, Eigen::Array< dataT, -1, -1 > &U, Eigen::Array< dataT, -1, -1 > &S, Eigen::Array< dataT, -1, -1 > &VT, int minMN, dataT &maxCondition, dataT alpha=0, int interact=MX_PINV_NO_INTERACT)
Calculate the pseudo-inverse of a patrix given its SVD.
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
The mxlib c++ namespace.
Definition mxError.hpp:106
A class to support linear prediction.
int calcCoefficients(const std::vector< realT > &ac, size_t Nc, size_t Npred=1, realT condition=0)
Calculate the LP coefficients given an autocorrelation.
int calcCoefficientsLevinson(const realT *ac, size_t acSz, size_t Nc, unsigned Npred=1)
int calcCoefficientsLevinson(const std::vector< realT > &ac, size_t Nc, size_t Npred=1)