mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
eigenLapack.hpp
Go to the documentation of this file.
1/** \file eigenLapack.hpp
2 * \brief Interfaces to Lapack and BLAS for Eigen-like arrays.
3 *
4 * \author Jared R. Males (jaredmales@gmail.com)
5 *
6 * \ingroup gen_math_files
7 *
8 */
9
10//***********************************************************************//
11// Copyright 2015, 2016, 2017 Jared R. Males (jaredmales@gmail.com)
12//
13// This file is part of mxlib.
14//
15// mxlib is free software: you can redistribute it and/or modify
16// it under the terms of the GNU General Public License as published by
17// the Free Software Foundation, either version 3 of the License, or
18// (at your option) any later version.
19//
20// mxlib is distributed in the hope that it will be useful,
21// but WITHOUT ANY WARRANTY; without even the implied warranty of
22// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23// GNU General Public License for more details.
24//
25// You should have received a copy of the GNU General Public License
26// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
27//***********************************************************************//
28
29#ifndef math_eigenLapack_hpp
30#define math_eigenLapack_hpp
31
32#pragma GCC system_header
33#include <Eigen/Dense>
34
35#include <cmath>
36
37#include "templateBLAS.hpp"
38#include "templateLapack.hpp"
39
40#include "../sys/timeUtils.hpp"
41
42// #include "vectorUtils.hpp"
43
44#include "../math/plot/gnuPlot.hpp"
45
46namespace mx
47{
48namespace math
49{
50
51/// Calculates the lower triangular part of the covariance matrix of ims.
52/** Uses cblas_ssyrk. cv is resized to ims.cols() X ims.cols().
53 * Calculates \f$ cv = A^T*A \f$.
54 *
55 *
56 * \tparam eigenT1 is the eigen matrix/array type of cv.
57 * \tparam eigenT2 is the eigen matrix/array type of ims
58 *
59 * \ingroup eigen_lapack
60 */
61template <typename eigenT1, typename eigenT2>
62void eigenSYRK( eigenT1 &cv, ///< [out] is the eigen matrix/array where to store the result
63 const eigenT2 &ims ///< [in] is the eigen matrix/array (images as columns) to
64 ///< calculate the covariance of
65)
66{
67 cv.resize( ims.cols(), ims.cols() );
68
69 math::syrk<typename eigenT1::Scalar>( /*const enum CBLAS_ORDER Order*/ CblasColMajor,
70 /*const enum CBLAS_UPLO Uplo*/ CblasLower,
71 /*const enum CBLAS_TRANSPOSE Trans*/ CblasTrans,
72 /*const MXLAPACK_INT N*/ ims.cols(),
73 /*const MXLAPACK_INT K*/ ims.rows(),
74 /*const float alpha*/ 1.0,
75 /*const float *A*/ ims.data(),
76 /*const MXLAPACK_INT lda*/ ims.rows(),
77 /*const float beta*/ 0.,
78 /*float *C*/ cv.data(),
79 /*const MXLAPACK_INT ldc*/ cv.rows() );
80}
81
82/// A struct to hold the working memory for eigenSYEVR and maintain it between calls if desired.
83/** \todo this should have the working memory for the first exploratory call to ?syevr as well.
84 */
85template <typename floatT>
87{
88 char UPLO{ 'L' };
89 MXLAPACK_INT n{ 0 };
90 char RANGE{ 'A' };
91 MXLAPACK_INT numeig{ 0 };
92 MXLAPACK_INT IL{ 0 };
93 MXLAPACK_INT IU{ 0 };
94
95 MXLAPACK_INT sizeISuppZ{ 0 };
96 MXLAPACK_INT sizeMinWork{ 0 };
97 MXLAPACK_INT sizeWork{ 0 };
98 MXLAPACK_INT sizeMinIWork{ 0 };
99 MXLAPACK_INT sizeIWork{ 0 };
100
101 MXLAPACK_INT *iSuppZ{ nullptr };
102
103 floatT *minWork{ nullptr };
104 floatT *work{ nullptr };
105
106 MXLAPACK_INT *minIWork{ nullptr };
107 MXLAPACK_INT *iWork{ nullptr };
108
109 // Working memory for the higher level ev calc routines
110 Eigen::Array<floatT, Eigen::Dynamic, Eigen::Dynamic> cvd, evecsd, evalsd;
111
112 syevrMem()
113 {
114 }
115
116 ~syevrMem()
117 {
118 if( iSuppZ )
119 {
120 ::free( iSuppZ );
121 }
122
123 if( minWork )
124 {
125 ::free( minWork );
126 }
127
128 if( work )
129 {
130 ::free( work );
131 }
132
133 if( minIWork )
134 {
135 ::free( minIWork );
136 }
137
138 if( iWork )
139 {
140 ::free( iWork );
141 }
142 }
143
144 void free()
145 {
146 if( iSuppZ )
147 {
148 ::free( iSuppZ );
149 }
150 sizeISuppZ = 0;
151
152 if( minWork )
153 {
154 ::free( minWork );
155 }
156 sizeMinWork = 0;
157
158 if( work )
159 {
160 ::free( work );
161 }
162 sizeWork = 0;
163
164 if( minIWork )
165 {
166 ::free( minIWork );
167 }
168 sizeMinIWork = 0;
169
170 if( iWork )
171 {
172 ::free( iWork );
173 }
174 sizeIWork = 0;
175 }
176};
177
178/// Calculate select eigenvalues and eigenvectors of an Eigen Array
179/** Uses the templateLapack wrapper for syevr.
180 *
181 * \tparam arrT is the eigen-like type containing the data
182 *
183 * \returns -1000 on an malloc allocation error.
184 * \returns the return code from syevr (info) otherwise.
185 *
186 * \ingroup eigen_lapack
187 */
188template <typename arrT>
189MXLAPACK_INT eigenSYEVR( arrT &eigvec, /**< [out] will contain the eigenvectors as columns*/
190 arrT &eigval, /**< [out] will contain the eigenvalues*/
191 arrT &X, /**< [in] is a square matrix which is either upper
192 or lower (default) triangular*/
193 int ev0 = 0, /**< [in] [opt] is the first desired eigenvalue
194 (default = 0)*/
195 int ev1 = -1, /**< [in] [opt] if >= ev0 then this is the last desired
196 eigenvalue. If -1 all eigenvalues are
197 returned.*/
198 char UPLO = 'L', /**< [in] [opt] specifies whether X is upper ('U')
199 or lower ('L') triangular.
200 Default is ('L').*/
201 syevrMem<typename arrT::Scalar> *mem = 0 /**< [in] [opt] holds the working memory arrays,
202 can be re-passed to avoid unnecessary
203 re-allocations*/
204)
205{
206 typedef typename arrT::Scalar calcT;
207
208 MXLAPACK_INT numeig, info;
209 char RANGE = 'A';
210
211 MXLAPACK_INT localMem = 0;
212
213 if( mem == 0 )
214 {
215 mem = new syevrMem<calcT>;
216 localMem = 1;
217 }
218
219 MXLAPACK_INT n = X.rows();
220
221 MXLAPACK_INT IL = 1;
222 MXLAPACK_INT IU = n;
223 if( ev0 >= 0 && ev1 >= ev0 )
224 {
225 RANGE = 'I';
226 IL = ev0 + 1; // This is FORTRAN, after all
227 IU = ev1;
228 }
229
230 eigvec.resize( n, IU - IL + 1 );
231 eigval.resize( n, 1 );
232
233 if( UPLO != mem->UPLO || n != mem->n || RANGE != mem->RANGE || mem->numeig != numeig || mem->IL != IL ||
234 mem->IU != IU )
235 {
236 if( mem->sizeISuppZ < 2 * n )
237 {
238 if( mem->iSuppZ )
239 {
240 free( mem->iSuppZ );
241 }
242
243 mem->sizeISuppZ = 2 * n;
244 mem->iSuppZ = (MXLAPACK_INT *)malloc( mem->sizeISuppZ * sizeof( MXLAPACK_INT ) );
245
246 if( mem->iSuppZ == NULL )
247 {
248 mxError( "eigenSYEVR", MXE_ALLOCERR, "malloc failed in eigenSYEVR." );
249 if( localMem )
250 {
251 delete mem;
252 }
253 return -1000;
254 }
255 }
256
257 // Allocate minimum allowed sizes for workspace
258 if( mem->sizeMinWork < 26 * n )
259 {
260 if( mem->minWork )
261 {
262 free( mem->minWork );
263 }
264 mem->sizeMinWork = 26 * n;
265 mem->minWork = (calcT *)malloc( mem->sizeMinWork * sizeof( calcT ) );
266 }
267
268 // MXLAPACK_INT sizeIWork = 10 * n;
269 if( mem->sizeMinIWork < 10 * n )
270 {
271 if( mem->minIWork )
272 {
273 free( mem->minIWork );
274 }
275 mem->sizeMinIWork = 10 * n;
276 mem->minIWork = (MXLAPACK_INT *)malloc( mem->sizeMinIWork * sizeof( MXLAPACK_INT ) );
277 }
278
279 // Query for optimum sizes for workspace
280 info = math::syevr<calcT>( 'V',
281 RANGE,
282 UPLO,
283 n,
284 X.data(),
285 n,
286 0,
287 0,
288 IL,
289 IU,
290 math::lamch<calcT>( 'S' ),
291 &numeig,
292 eigval.data(),
293 eigvec.data(),
294 n,
295 mem->iSuppZ,
296 mem->minWork,
297 -1,
298 mem->minIWork,
299 -1 );
300
301 if( info != 0 )
302 {
303 mxError( "eigenSYEVR", MXE_LAPACKERR, "error from SYEVR" );
304 if( localMem )
305 {
306 delete mem;
307 }
308
309 return info;
310 }
311
312 // Now allocate optimum sizes
313 /* -- tested increasing by x10, didn't improve performance at all
314 */
315 if( mem->sizeWork < ( (MXLAPACK_INT)mem->minWork[0] ) * ( 1 ) )
316 {
317 if( mem->work )
318 {
319 free( mem->work );
320 }
321
322 mem->sizeWork = ( (MXLAPACK_INT)mem->minWork[0] ) * 1;
323 mem->work = (calcT *)malloc( ( mem->sizeWork ) * sizeof( calcT ) );
324 }
325
326 if( mem->sizeIWork < mem->minIWork[0] * 1 )
327 {
328 if( mem->iWork )
329 {
330 free( mem->iWork );
331 }
332
333 mem->sizeIWork = mem->minIWork[0] * 1;
334 mem->iWork = (MXLAPACK_INT *)malloc( ( mem->sizeIWork ) * sizeof( MXLAPACK_INT ) );
335 }
336
337 if( ( mem->work == NULL ) || ( mem->iWork == NULL ) )
338 {
339 mxError( "eigenSYEVR", MXE_ALLOCERR, "malloc failed in eigenSYEVR." );
340 if( localMem )
341 {
342 delete mem;
343 }
344 return -1000;
345 }
346
347 mem->UPLO = UPLO;
348 mem->n = n;
349 mem->RANGE = RANGE;
350 mem->numeig = numeig;
351 mem->IL = IL;
352 mem->IU = IU;
353 }
354
355 // Now actually do the calculationg
356 info = math::syevr<calcT>( 'V',
357 RANGE,
358 UPLO,
359 n,
360 X.data(),
361 n,
362 0,
363 0,
364 IL,
365 IU,
366 math::lamch<calcT>( 'S' ),
367 &numeig,
368 eigval.data(),
369 eigvec.data(),
370 n,
371 mem->iSuppZ,
372 mem->work,
373 mem->sizeWork,
374 mem->iWork,
375 mem->sizeIWork );
376
377 /* Cleanup and exit */
378
379 if( localMem )
380 {
381 delete mem;
382 }
383
384 return info;
385}
386
387/// Calculate the eigenvectors and eigenvalues given a triangular matrix
388/** Eigen-decomposition of the matrix is performed using \ref eigenSYEVR().
389 *
390 * \tparam evCalcT is the type in which to perform eigen-decomposition, which may be different
391 * from the input array and output arrays (which must be the same).
392 * \tparam eigenT is a 2D Eigen-like type
393 *
394 * \ingroup eigen_lapack
395 */
396template <typename _evCalcT = double, typename eigenT>
397MXLAPACK_INT calcEigenVecs( eigenT &evecs, /**< [out] on exit contains the eigen vectors*/
398 eigenT &evals, /**< [out] on exit contains the eigen vectors*/
399 eigenT &cv, /**< [in] a lower-triangle (in the Lapack sense) square
400 covariance matrix.*/
401 int nVecs = 0, /**< [in] [opt] The maximum number of modes to solve
402 for. If 0 all modes are solved for.*/
403 bool normalize = false, /**< [in] [opt] flag specifying whether or not to
404 normalize the eigenvectors.*/
405 bool check = false, /**< [in] [opt] flag specifying whether or not to
406 check the eigenvalues/vectors for
407 validity. Requires normalize=true.*/
408 syevrMem<_evCalcT> *mem = 0, /**< [in] [opt] A memory structure which can be
409 re-used by SYEVR for efficiency.*/
410 double *t_eigenv = nullptr /**< [out] [opt] if not null, will be filled in
411 with the time taken to calculate
412 eigenvalues.*/ )
413{
414 typedef _evCalcT evCalcT;
415 typedef typename eigenT::Scalar realT;
416
417 bool localMem = false;
418
419 if( mem == 0 )
420 {
422 localMem = true;
423 }
424
425 if( cv.rows() != cv.cols() )
426 {
427 std::cerr << "calcEigenVecs: Non-square covariance matrix input to calcKLModes\n";
428 if( localMem )
429 {
430 delete mem;
431 }
432 return -1;
433 }
434
435 MXLAPACK_INT tNims = cv.rows();
436
438 {
439 nVecs = tNims;
440 }
441
442 if( t_eigenv )
443 {
444 *t_eigenv = sys::get_curr_time();
445 }
446
447 mem->cvd = cv.template cast<evCalcT>();
448
449 // Calculate eigenvectors and eigenvalues
450 /* SYEVR sorts eigenvalues in ascending order, so we specifiy the top n_modes
451 */
452 MXLAPACK_INT info = eigenSYEVR( mem->evecsd, mem->evalsd, mem->cvd, tNims - nVecs, tNims, 'L', mem );
453
454 if( info != 0 )
455 {
456 std::cerr << "calcEigenVecs: eigenSYEVR returned an error (info = " << info << ")\n";
457 if( localMem )
458 {
459 delete mem;
460 }
461
462 return -1;
463 }
464
465 evecs = mem->evecsd.template cast<realT>();
466 evals = mem->evalsd.template cast<realT>();
467
468 if( normalize )
469 {
470 // Normalize the eigenvectors
471 if( !check )
472 {
473 for( MXLAPACK_INT i = 0; i < nVecs; ++i )
474 {
475 evecs.col( i ) = evecs.col( i ) / sqrt( evals( i ) );
476 }
477 }
478 else // here we check for invalid results and 0 things out
479 {
480 for( MXLAPACK_INT i = 0; i < nVecs; ++i )
481 {
482 if( evals( i ) == 0 )
483 {
484 std::cerr << "got 0 eigenvalue (# " << i << ")\n";
485 evecs.col( i ) *= 0;
486 }
487 else if( evals( i ) < 0 )
488 {
489 std::cerr << "got < 0 eigenvalue (# " << i << ")\n";
490 evecs.col( i ) *= 0;
491 }
492 else if( !std::isnormal( evals( i ) ) )
493 {
494 std::cerr << "got not-normal eigenvalue (# " << i << ")\n";
495 evecs.col( i ) *= 0;
496 }
497 else
498 {
499 evecs.col( i ) = evecs.col( i ) / sqrt( evals( i ) );
500 }
501
502 for( int r = 0; r < evecs.rows(); ++r )
503 {
504 if( !std::isnormal( evecs.col( i )( r ) ) )
505 {
506 std::cerr << "got not-normal eigenvector entry (# " << i << "," << r << ")\n";
507 evecs.col( i ) *= 0;
508 continue;
509 }
510 }
511 }
512 }
513 }
514
515 if( t_eigenv )
516 {
517 *t_eigenv = sys::get_curr_time() - *t_eigenv;
518 }
519
520 if( localMem )
521 {
522 delete mem;
523 }
524
525 return 0;
526
527} // calcKLModes
528
529/// Calculate the K-L modes, or principle components, given a covariance matrix.
530/** Eigen-decomposition of the covariance matrix is performed using \ref eigenSYEVR().
531 *
532 * \tparam evCalcT is the type in which to perform eigen-decomposition.
533 * \tparam eigenT is a 2D Eigen-like type
534 * \tparam eigenT1 is a 2D Eigen-like type.
535 *
536 * \ingroup eigen_lapack
537 */
538template <typename _evCalcT = double, typename eigenT, typename eigenT1>
539MXLAPACK_INT calcKLModes( eigenT &klModes, /**< [out] on exit contains the K-L modes (or P.C.s) */
540 eigenT &cv, /**< [in] a lower-triangle (in the Lapack sense) square
541 covariance matrix.*/
542 const eigenT1 &Rims, /**< [in] The reference data. cv.rows() == Rims.cols().*/
543 int n_modes = 0, /**< [in] [opt] Tbe maximum number of modes to solve for.
544 If 0 all modes are solved for.*/
545 syevrMem<_evCalcT> *mem = 0, /**< [in] [opt] A memory structure which can be re-used
546 by SYEVR for efficiency.*/
547 double *t_eigenv = nullptr, /**< [out] [opt] if not null, will be filled in with the time
548 taken to calculate eigenvalues.*/
549 double *t_klim = nullptr /**< [out] [opt] if not null, will be filled in with the time
550 taken to calculate the KL modes.*/)
551{
552 typedef _evCalcT evCalcT;
553 typedef typename eigenT::Scalar realT;
554
555 bool localMem = false;
556
557 if( mem == 0 )
558 {
560 localMem = true;
561 }
562
563 if( cv.rows() != Rims.cols() )
564 {
565 std::cerr << "Covariance matrix - reference image size mismatch in calcKLModes\n";
566 return -1;
567 }
568
570
571 MXLAPACK_INT tNims = cv.rows();
572 MXLAPACK_INT tNpix = Rims.rows();
573
575 {
576 n_modes = tNims;
577 }
578
579 // Eigen::Array<evCalcT, Eigen::Dynamic, Eigen::Dynamic> evecsd, evalsd;
580 mem->cvd = cv.template cast<evCalcT>();
581 MXLAPACK_INT info = calcEigenVecs( mem->evecsd, mem->evalsd, mem->cvd, n_modes, true, true, mem, t_eigenv );
582
583 if( info != 0 )
584 {
585 std::cerr << "calckKLModes: eigenSYEVR returned an error (info = " << info << ")\n";
586 return -1;
587 }
588
589 evecs = mem->evecsd.template cast<realT>();
590 evals = mem->evalsd.template cast<realT>();
591
592 klModes.resize( n_modes, tNpix );
593
594 if( t_klim )
595 {
596 *t_klim = sys::get_curr_time();
597 }
598
599 // Now calculate KL images
600 /*
601 * KL = E^T * R ==> C = A^T * B
602 */
606 n_modes,
607 tNpix,
608 tNims,
609 1.,
610 evecs.data(),
611 cv.rows(),
612 Rims.data(),
613 Rims.rows(),
614 0.,
615 klModes.data(),
616 klModes.rows() );
617
618 if( t_klim )
619 {
620 *t_klim = sys::get_curr_time() - *t_klim;
621 }
622
623 if( localMem )
624 {
625 delete mem;
626 }
627
628 return 0;
629
630} // calcKLModes
631
632/// Compute the SVD of an Eigen::Array using LAPACK's xgesdd
633/** Computes the SVD of A, \f$ A = U S V^T \f$.
634 *
635 * \returns 0 on success
636 * \returns -i on error in ith parameter (from LAPACK xgesdd)
637 * \returns >0 did not converge (from LAPACK xgesdd)
638 *
639 * \tparam dataT is either float or double.
640 *
641 * \ingroup eigen_lapack
642 */
643template <typename dataT>
644MXLAPACK_INT eigenGESDD( Eigen::Array<dataT, -1, -1> &U, ///< [out] the A.rows() x A.rows() left matrix
645 Eigen::Array<dataT, -1, -1> &S, ///< [out] the A.cols() x 1 matrix of singular values
646 Eigen::Array<dataT, -1, -1> &VT, /**< [out] the A.cols() x A.cols() right matrix, note this
647 is the transpose. */
648 Eigen::Array<dataT, -1, -1> &A ///< [in] the input matrix to be decomposed
649)
650{
651 char JOBZ = 'A';
652 MXLAPACK_INT M = A.rows();
653 MXLAPACK_INT N = A.cols();
654 MXLAPACK_INT LDA = M;
655 S.resize( N, 1 );
656 U.resize( M, M );
657 MXLAPACK_INT LDU = M;
658 VT.resize( N, N );
659 MXLAPACK_INT LDVT = N;
660
661 dataT wkOpt;
662 MXLAPACK_INT LWORK = -1;
663
664 MXLAPACK_INT *IWORK = new MXLAPACK_INT[8 * M];
665 MXLAPACK_INT INFO;
666
668 dataT>( JOBZ, M, N, A.data(), LDA, S.data(), U.data(), LDU, VT.data(), LDVT, &wkOpt, LWORK, IWORK, INFO );
669
670 LWORK = wkOpt;
671 // delete WORK;
672 dataT *WORK = new dataT[LWORK];
673
675 dataT>( JOBZ, M, N, A.data(), LDA, S.data(), U.data(), LDU, VT.data(), LDVT, WORK, LWORK, IWORK, INFO );
676
677 delete[] WORK;
678 delete[] IWORK;
679
680 return INFO;
681}
682
683#define MX_PINV_NO_INTERACT 0
684#define MX_PINV_PLOT 1
685#define MX_PINV_ASK 2
686#define MX_PINV_ASK_NMODES 4
687
688/// Calculate the pseudo-inverse of a patrix given its SVD
689/** Given the SVD of A, \f$ A = U S V^T \f$, as calculated by eigenGESDD the psuedo-inverse is
690 * calculated as \f$ A^+ = V S^+ U^T\f$.
691 *
692 * The parameter \p interact is intepreted as a bitmask. The values can be
693 * - \ref MX_PINV_PLOT which will cause a plot to be displayed of the singular values
694 * - \ref MX_PINV_ASK which will ask the user for a max. condition number using stdin
695 * - \ref MX_PINV_ASK_NMODES which will ask the user for a max number of modes to include using
696 * stdin. Overrides MX_PINV_ASK. If \p interact is 0 then no interaction is used and \p
697 * maxCondition controls the inversion.
698 *
699 * \tparam dataT is either float or double.
700 *
701 * \ingroup eigen_lapack
702 */
703template <typename dataT>
704int eigenPseudoInverse( Eigen::Array<dataT, -1, -1> &PInv, ///< [out] The pseudo-inverse of A
705 dataT &condition, ///< [out] The final condition number.
706 int &nRejected, ///< [out] The number of eigenvectors rejected
707 Eigen::Array<dataT, -1, -1> &U, ///< [in] the A.rows() x A.rows() left matrix
708 Eigen::Array<dataT, -1, -1> &S, ///< [in] the A.cols() x 1 matrix of singular values
709 Eigen::Array<dataT, -1, -1> &VT, /**< [in] the A.cols() x A.cols() right matrix, note this
710 is the transpose. */
711 int minMN, ///< [in] The minimum size of the matrix to invert.
712 dataT &maxCondition, /**< [in] If > 0, the maximum condition number desired.
713 If <0 the number of modes to keep. Used to
714 threshold the singular values. Set to 0 to
715 include all eigenvalues/vectors. Ignored if
716 interactive. */
717 dataT alpha = 0, /**< [in] [opt] the Tikhonov regularization value, as
718 a fraction of the highest singular value.
719 If alpha < 0, then it is treated as a (positive)
720 floor (as a fraction of highest singular value)
721 for the singular values, which is not the same as
722 Tikhonov (alpha > 0).*/
723 int interact = MX_PINV_NO_INTERACT /**< [in] [opt] a bitmask controlling interaction.
724 See above.*/
725)
726{
727
728 dataT Smax = S.maxCoeff();
729
730 if( alpha > 0 )
731 {
732 for( MXLAPACK_INT i = 0; i < S.rows(); ++i )
733 {
734 S( i ) = ( pow( S( i ), 2 ) + pow( alpha * Smax, 2 ) ) / S( i );
735 }
736 }
737
738 if( alpha < 0 )
739 {
740 for( MXLAPACK_INT i = 0; i < S.rows(); ++i )
741 {
742 S( i ) = S( i ) + -alpha * Smax;
743 }
744 }
745
746 int modesToReject = 0;
747 if( maxCondition < 0 ) // Rejecting mode numbers
748 {
750
751 if( modesToReject - 1 < S.rows() )
752 {
753 maxCondition = Smax / S( modesToReject - 1, 0 );
754 }
755 }
756
757 if( interact & MX_PINV_PLOT )
758 {
759 gnuPlot gp;
760 gp.command( "set title \"SVD Singular Values\"" );
761 gp.logy();
762 gp.plot( S.data(), S.rows(), " w lp", "singular values" );
763 }
764
766 {
767 dataT mine;
768 std::cout << "Maximum singular value: " << Smax << "\n";
769 std::cout << "Minimum singular value: " << S.minCoeff() << "\n";
770 std::cout << "Enter singular value threshold: ";
771 std::cin >> mine;
772
773 if( mine > 0 )
774 {
776 }
777 else
778 {
779 maxCondition = Smax / S( S.rows() - 1, 0 );
780 }
781 }
782 else if( interact & MX_PINV_ASK_NMODES )
783 {
784 unsigned mine;
785 std::cout << "Maximum singular value: " << Smax << "\n";
786 std::cout << "Minimum singular value: " << S.minCoeff() << "\n";
787 std::cout << "Enter number of modes to keep: ";
788 std::cin >> mine;
789 modesToReject = S.rows() - mine;
790
792 {
793 modesToReject = 0;
794 }
795
797 }
798
799 Eigen::Array<dataT, -1, -1> sigma;
800 sigma.resize( S.rows(), S.rows() );
801 sigma.setZero();
802
803 nRejected = 0;
804
805 if( maxCondition > 0 )
806 {
807 dataT threshold = 0;
808
809 if( maxCondition > 0 )
810 {
811 threshold = Smax / maxCondition;
812
813 condition = 1;
814
815 for( MXLAPACK_INT i = 0; i < S.rows(); ++i )
816 {
817 if( S( i ) >= threshold )
818 {
819 sigma( i, i ) = 1. / S( i );
820 if( Smax / S( i ) > condition )
821 {
822 condition = Smax / S( i );
823 }
824 }
825 else
826 {
827 sigma( i, i ) = 0;
828 ++nRejected;
829 }
830 }
831 }
832 }
833 else // rejecting modes
834 {
835 std::cerr << "rejecting based on modes\n";
836 std::cerr << " modes to reject: " << modesToReject << "\n";
837 for( MXLAPACK_INT i = 0; i < S.rows(); ++i )
838 {
839 if( i < S.rows() - modesToReject )
840 {
841 sigma( i, i ) = 1. / S( i );
842 if( Smax / S( i ) > condition )
843 condition = Smax / S( i );
844 }
845 else
846 {
847 sigma( i, i ) = 0;
848 ++nRejected;
849 }
850 }
851 }
852
853 if( interact & MX_PINV_PLOT )
854 {
855 std::vector<dataT> vsig( sigma.rows() );
856 for( int rr = 0; rr < sigma.rows(); ++rr )
857 {
858 vsig[rr] = sigma( rr, rr );
859 }
860
861 gnuPlot gp;
862 gp.command( "set title \"Inverted Singular Values\"" );
863 gp.logy();
864 gp.plot( vsig.data(), vsig.size(), " w lp", "inverted singular values" );
865 }
866
868 {
869 dataT mine;
870 std::cout << "Modes Rejected: " << nRejected << "\n";
871 std::cout << "Condition Number: " << condition << "\n";
872 }
873
874 PInv = ( VT.matrix().transpose() * sigma.matrix().transpose() ) *
875 U.block( 0, 0, U.rows(), minMN ).matrix().transpose();
876
877 return 0;
878}
879
880/// Calculate the pseudo-inverse of a patrix using the SVD
881/** First computes the SVD of A, \f$ A = U S V^T \f$, using eigenGESDD. Then the psuedo-inverse is
882 * calculated as \f$ A^+ = V S^+ U^T\f$.
883 *
884 * The parameter \p interact is intepreted as a bitmask. The values can be
885 * - \ref MX_PINV_PLOT which will cause a plot to be displayed of the singular values
886 * - \ref MX_PINV_ASK which will ask the user for a max. condition number using stdin
887 * - \ref MX_PINV_ASK_NMODES which will ask the user for a max number of modes to include using
888 * stdin. Overrides MX_PINV_ASK. If \p interact is 0 then no interaction is used and \p
889 * maxCondition controls the inversion.
890 *
891 * \tparam dataT is either float or double.
892 *
893 * \ingroup eigen_lapack
894 */
895template <typename dataT>
896int eigenPseudoInverse( Eigen::Array<dataT, -1, -1> &PInv, ///< [out] The pseudo-inverse of A
897 dataT &condition, ///< [out] The final condition number.
898 int &nRejected, ///< [out] The number of eigenvectors rejected
899 Eigen::Array<dataT, -1, -1> &U, ///< [out] the A.rows() x A.rows() left matrix
900 Eigen::Array<dataT, -1, -1> &S, ///< [out] the A.cols() x 1 matrix of singular values
901 Eigen::Array<dataT, -1, -1> &VT, /**< [out] the A.cols() x A.cols() right matrix, note this
902 is the transpose. */
903 Eigen::Array<dataT, -1, -1> &A, ///< [in] The matrix to invert. This will be modified!
904 dataT &maxCondition, /**< [in] If > 0, the maximum condition number desired.
905 If <0 the number of modes to keep. Used to
906 threshold the singular values. Set to 0 to
907 include all eigenvalues/vectors. Ignored if
908 interactive. */
909 dataT alpha = 0, /**< [in] [opt] the Tikhonov regularization value, as
910 a fraction of the highest singular value.
911 If alpha < 0, then it is treated as a (positive)
912 floor (as a fraction of highest singular value)
913 for the singular values, which is not the same as
914 Tikhonov (alpha > 0).*/
915 int interact = MX_PINV_NO_INTERACT /**< [in] [opt] a bitmask controlling interaction.
916 See above.*/
917)
918{
919
920 int minMN = std::min( A.rows(), A.cols() );
921
922 MXLAPACK_INT info;
923 info = eigenGESDD( U, S, VT, A );
924
925 if( info != 0 )
926 {
927 std::cerr << "eigenPseudoInverse: eigenGESDD failed with info = " << info << "\n";
928 return info;
929 }
930
931 return eigenPseudoInverse( PInv, condition, nRejected, U, S, VT, minMN, maxCondition, alpha, interact );
932}
933
934/// Calculate the pseudo-inverse of a matrix using the SVD
935/** First computes the SVD of A, \f$ A = U S V^T \f$, using eigenGESDD. Then the psuedo-inverse is
936 * calculated as \f$ A^+ = V S^+ U^T\f$. This interface does not provide access to U, S and VT.
937 *
938 * The parameter \p interact is intepreted as a bitmask. The values can be
939 * - \ref MX_PINV_PLOT which will cause a plot to be displayed of the singular values
940 * - \ref MX_PINV_ASK which will ask the user for a max. condition number using stdin
941 * - \ref MX_PINV_ASK_NMODES which will ask the user for a max number of modes to include using
942 * stdin. Overrides MX_PINV_ASK. If \p interact is 0 then no interaction is used and maxCondition
943 * controls the inversion.
944 * *
945 * \tparam dataT is either float or double.
946 *
947 * \overload
948 *
949 * \ingroup eigen_lapack
950 */
951template <typename dataT>
952int eigenPseudoInverse( Eigen::Array<dataT, -1, -1> &PInv, ///< [out] The pseudo-inverse of A
953 dataT &condition, ///< [out] The final condition number.
954 int &nRejected, /**< [out] The number of eigenvectors
955 rejected*/
956 Eigen::Array<dataT, -1, -1> &A, /**< [in] The matrix to invert, will be
957 altered!*/
958 dataT &maxCondition, /**< [in] If > 0, the maximum condition number desired.
959 If <0 the number of modes to keep. Used to
960 threshold the singular values. Set to 0 to
961 include all eigenvalues/vectors. Ignored if
962 interactive.*/
963 dataT alpha = 0, /**< [in] [opt] the Tikhonov regularization value,
964 as a fraction of the highest singular value. If
965 alpha < 0, then it is treated as a (positive)
966 floor (as a fraction of highest singular value)
967 for the singular values, which is not the same
968 as Tikhonov (alpha > 0).*/
969 int interact = MX_PINV_NO_INTERACT /**< [in] [opt] a bitmask controlling interaction.
970 See above.*/
971)
972{
973 Eigen::Array<dataT, -1, -1> S, U, VT;
974
975 return eigenPseudoInverse( PInv, condition, nRejected, U, S, VT, A, maxCondition, alpha, interact );
976}
977
978} // namespace math
979} // namespace mx
980
981#endif // math_eigenLapack_hpp
An interactive c++ interface to gnuplot.
Definition gnuPlot.hpp:194
int command(const std::string &com, bool flush=true)
Send a command to gnuplot.
MXLAPACK_INT calcKLModes(eigenT &klModes, eigenT &cv, const eigenT1 &Rims, int n_modes=0, syevrMem< _evCalcT > *mem=0, double *t_eigenv=nullptr, double *t_klim=nullptr)
Calculate the K-L modes, or principle components, given a covariance matrix.
MXLAPACK_INT calcEigenVecs(eigenT &evecs, eigenT &evals, eigenT &cv, int nVecs=0, bool normalize=false, bool check=false, syevrMem< _evCalcT > *mem=0, double *t_eigenv=nullptr)
Calculate the eigenvectors and eigenvalues given a triangular matrix.
void eigenSYRK(eigenT1 &cv, const eigenT2 &ims)
Calculates the lower triangular part of the covariance matrix of ims.
int eigenPseudoInverse(Eigen::Array< dataT, -1, -1 > &PInv, dataT &condition, int &nRejected, Eigen::Array< dataT, -1, -1 > &U, Eigen::Array< dataT, -1, -1 > &S, Eigen::Array< dataT, -1, -1 > &VT, int minMN, dataT &maxCondition, dataT alpha=0, int interact=MX_PINV_NO_INTERACT)
Calculate the pseudo-inverse of a patrix given its SVD.
MXLAPACK_INT eigenSYEVR(arrT &eigvec, arrT &eigval, arrT &X, int ev0=0, int ev1=-1, char UPLO='L', syevrMem< typename arrT::Scalar > *mem=0)
Calculate select eigenvalues and eigenvectors of an Eigen Array.
MXLAPACK_INT eigenGESDD(Eigen::Array< dataT, -1, -1 > &U, Eigen::Array< dataT, -1, -1 > &S, Eigen::Array< dataT, -1, -1 > &VT, Eigen::Array< dataT, -1, -1 > &A)
Compute the SVD of an Eigen::Array using LAPACK's xgesdd.
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
typeT get_curr_time()
Get the current system time in seconds.
Definition timeUtils.hpp:90
The mxlib c++ namespace.
Definition mxError.hpp:106
A struct to hold the working memory for eigenSYEVR and maintain it between calls if desired.
Declares and defines templatized wrappers for the BLAS.
Declares and defines templatized wrappers for the Lapack library.