mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
moffat.hpp
Go to the documentation of this file.
1/** \file moffat.hpp
2 * \author Jared R. Males
3 * \brief Declarations for utilities related to the Moffat function.
4 * \ingroup gen_math_files
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2020 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef math_func_moffat_hpp
28#define math_func_moffat_hpp
29
30#include <cmath>
31
32namespace mx
33{
34namespace math
35{
36namespace func
37{
38
39/** \addtogroup gen_math_moffats
40 * The Moffat Function\cite moffat_1969, a.k.a. the Moffat Profile, a.k.a. the Moffat Distribution, has the form
41 * \f[
42 I(x) = I_{pk}\left[ 1 + \frac{x^2}{\alpha^2}\right]^{-\beta}
43 * \f]
44 * With \f$\beta=1\f$ it is the
45 * Lorentzian or Cauchy distribution. See also https://en.wikipedia.org/wiki/Moffat_distribution and
46 * https://en.wikipedia.org/wiki/Cauchy_distribution.
47 *
48 * 1-D and 2-D symmetric forms are provided. Utilities are provided for normalizing and calculating the full-width at
49 half-maximum.
50 */
51
52/// Find value at position (x) of the 1D arbitrarily-centered symmetric unnormalized Moffat function
53/** The Moffat distribution is due to \cite moffat_1969. With \f$\beta=1\f$ it is the
54 * Lorentzian or Cauchy distribution. See also https://en.wikipedia.org/wiki/Moffat_distribution and
55 * https://en.wikipedia.org/wiki/Cauchy_distribution.
56 *
57 * Here we use the unnormalized general form, most useful for peak fitting.
58 *
59 * This function computes:
60 * \f[
61 I(x) = I_0 + I_{pk}\left[ 1 + \frac{(x-x_0)^2}{\alpha^2}\right]^{-\beta}
62 * \f]
63 *
64 * \returns the value of the 1D arbitrarily-centered unnormalized Moffat at (x)
65 *
66 * \tparam realT is type to use for arithmetic
67 *
68 * \test Scenario: compiling 1D Moffat function \ref tests_math_func_moffat1D "[test doc]"
69 *
70 * \ingroup gen_math_moffats
71 */
72template <typename realT>
73realT moffat( const realT x, ///< [in] is the x-position at which to evaluate the Moffat function
74 const realT I0, ///< [in] is the constant to add to the Moffat function
75 const realT Ipk, ///< [in] is the scaling factor (peak = A)
76 const realT x0, ///< [in] is the x-coordinate of the center
77 const realT alpha, ///< [in] is the width parameter of the Moffat function.
78 const realT beta ///< [in] is the shape parameter of the Moffat function
79)
80{
81 return I0 + Ipk * pow( static_cast<realT>( 1 ) + pow( x - x0, 2 ) / pow( alpha, 2 ), -beta );
82}
83
84extern template float
85moffat<float>( const float x, const float I0, const float Ipk, const float x0, const float alpha, const float beta );
86
87extern template double moffat<double>(
88 const double x, const double I0, const double Ipk, const double x0, const double alpha, const double beta );
89
90extern template long double moffat<long double>( const long double x,
91 const long double I0,
92 const long double Ipk,
93 const long double x0,
94 const long double alpha,
95 const long double beta );
96
97#ifdef HASQUAD
98extern template __float128 moffat<__float128>( const __float128 x,
99 const __float128 I0,
100 const __float128 Ipk,
101 const __float128 x0,
102 const __float128 alpha,
103 const __float128 beta );
104#endif
105
106/// Find value at position (x,y) of the 2D arbitrarily-centered unnormalized symmetric Moffat function
107/** The Moffat distribution is due to \cite moffat_1969. With \f$\beta=1\f$ it is the
108 * Lorentzian or Cauchy distribution. See also https://en.wikipedia.org/wiki/Moffat_distribution and
109 * https://en.wikipedia.org/wiki/Cauchy_distribution.
110 *
111 * Here we use the unnormalized general form, most useful for peak fitting.
112 *
113 * This function omputes:
114 * \f[
115 I(x) = I_0 + I_{pk}\left[ 1 + \frac{(x-x_0)^2 + (y-y_0)^2}{\alpha^2}\right]^{-\beta}
116 * \f]
117 *
118 * \returns the value of the 2D arbitrarily-centered symmetric Moffat function at (x,y)
119 *
120 * \tparam realT is type to use for arithmetic
121 *
122 * \test Scenario: compiling 2D Moffat function \ref tests_math_func_moffat2D "[test doc]"
123 *
124 * \ingroup gen_math_moffats
125 */
126template <typename realT>
127realT moffat2D( const realT x, ///< [in] the x-position at which to evaluate the Moffat function
128 const realT y, ///< [in] the y-positoin at which to evaluate the Moffat function
129 const realT I0, ///< [in] the constant to add to the Moffat function
130 const realT Ipk, ///< [in] the scaling factor (peak height is A-G0)
131 const realT x0, ///< [in] the x-coordinate of the center
132 const realT y0, ///< [in] the y-coordinate of the center
133 const realT alpha, ///< [in] the width parameter of the Moffat function.
134 const realT beta ///< [in] the shape parameter of the Moffat function.
135)
136{
137 return I0 + Ipk * pow( static_cast<realT>( 1 ) + ( pow( x - x0, 2 ) + pow( y - y0, 2 ) ) / pow( alpha, 2 ), -beta );
138}
139
140extern template float moffat2D<float>( const float x,
141 const float y,
142 const float I0,
143 const float Ipk,
144 const float x0,
145 const float y0,
146 const float alpha,
147 const float beta );
148
149extern template double moffat2D<double>( const double x,
150 const double y,
151 const double I0,
152 const double Ipk,
153 const double x0,
154 const double y0,
155 const double alpha,
156 const double beta );
157
158extern template long double moffat2D<long double>( const long double x,
159 const long double y,
160 const long double I0,
161 const long double Ipk,
162 const long double x0,
163 const long double y0,
164 const long double alpha,
165 const long double beta );
166
167#ifdef HASQUAD
168extern template __float128 moffat2D<__float128>( const __float128 x,
169 const __float128 y,
170 const __float128 I0,
171 const __float128 Ipk,
172 const __float128 x0,
173 const __float128 y0,
174 const __float128 alpha,
175 const __float128 beta );
176#endif
177
178/// Compute the full-width at half-maximum of a Moffat profile
179/** This returns the value of
180 * \f[
181 * FWHM = 2 \alpha \sqrt{2^{1/\beta} - 1}
182 * \f]
183 *
184 * \returns the FWHM of the Moffat profile
185 *
186 * \tparam realT is the type to use for arithmetic
187 *
188 * \test Scenario: compiling Moffat FWHM \ref tests_math_func_moffatFWHM "[test doc]"
189 *
190 * \ingroup gen_math_moffats
191 */
192template <typename realT>
193realT moffatFWHM( realT alpha, ///< [in] the width parameter of the Moffat function.
194 realT beta ///< [in] the shape parameter of the Moffat function.
195)
196{
197 return 2 * alpha * sqrt( pow( static_cast<realT>( 2 ), static_cast<realT>( 1 ) / beta ) - 1 );
198}
199
200extern template float moffatFWHM( float alpha, float beta );
201
202extern template double moffatFWHM( double alpha, double beta );
203
204extern template long double moffatFWHM( long double alpha, long double beta );
205
206#ifdef HASQUAD
207extern template __float128 moffatFWHM( __float128 alpha, __float128 beta );
208#endif
209
210} // namespace func
211} // namespace math
212} // namespace mx
213
214#endif // math_func_moffat_hpp
realT moffatFWHM(realT alpha, realT beta)
Compute the full-width at half-maximum of a Moffat profile.
Definition moffat.hpp:193
realT moffat(const realT x, const realT I0, const realT Ipk, const realT x0, const realT alpha, const realT beta)
Find value at position (x) of the 1D arbitrarily-centered symmetric unnormalized Moffat function.
Definition moffat.hpp:73
realT moffat2D(const realT x, const realT y, const realT I0, const realT Ipk, const realT x0, const realT y0, const realT alpha, const realT beta)
Find value at position (x,y) of the 2D arbitrarily-centered unnormalized symmetric Moffat function.
Definition moffat.hpp:127
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
The mxlib c++ namespace.
Definition mxError.hpp:106