mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
psdUtils.hpp
Go to the documentation of this file.
1/** \file psdUtils.hpp
2 * \brief Tools for working with PSDs
3 *
4 * \author Jared R. Males (jaredmales@gmail.com)
5 *
6 * \ingroup signal_processing_files
7 *
8 */
9
10//***********************************************************************//
11// Copyright 2015-2021 Jared R. Males (jaredmales@gmail.com)
12//
13// This file is part of mxlib.
14//
15// mxlib is free software: you can redistribute it and/or modify
16// it under the terms of the GNU General Public License as published by
17// the Free Software Foundation, either version 3 of the License, or
18// (at your option) any later version.
19//
20// mxlib is distributed in the hope that it will be useful,
21// but WITHOUT ANY WARRANTY; without even the implied warranty of
22// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23// GNU General Public License for more details.
24//
25// You should have received a copy of the GNU General Public License
26// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
27//***********************************************************************//
28
29#ifndef psdUtils_hpp
30#define psdUtils_hpp
31
32#ifndef EIGEN_NO_CUDA
33#define EIGEN_NO_CUDA
34#endif
35
36#include <type_traits>
37
38#include <Eigen/Dense>
39
40#include <iostream>
41
42#include "../mxError.hpp"
43
44#include "../math/ft/fftT.hpp"
45#include "../math/vectorUtils.hpp"
46
47namespace mx
48{
49namespace sigproc
50{
51
52/** \ingroup psds
53 * @{
54 */
55
56/// Calculate the variance of a 1-D, 1-sided PSD
57/** By default uses trapezoid rule integration. This can be changed to mid-point integration.
58 *
59 * \returns the variance of a PSD (the integral).
60 *
61 * \tparam realT the real floating point type
62 *
63 * \test Scenario: calculating variance from a 1D PSD \ref tests_sigproc_psdUtils_psdVar_1D "[test doc]"
64 */
65template <typename realT>
66realT psdVar1sided( realT df, ///< [in] the frequency scale of the PSD
67 const realT *PSD, ///< [in] the PSD to integrate.
68 size_t sz, ///< [in] the size of the PSD vector
69 realT half = 0.5 ///< [in] [optional] controls if trapezoid (0.5) or mid-point (1.0) integration is
70 ///< used. Do not use other values.
71)
72{
73 realT var = 0;
74
75 var = half * PSD[0];
76
77 for( size_t i = 1; i < sz - 1; ++i )
78 var += PSD[i];
79
80 var += half * PSD[sz - 1];
81
82 var *= df;
83
84 return var;
85}
86
87/// Calculate the variance of a 1-D, 2-sided PSD
88/** By default uses trapezoid rule integration. This can be changed to mid-point integration.
89 *
90 * Assumes the 2-sided PSD is in standard FFT storage order, and that sz is even.
91 *
92 * \returns the variance of a PSD (the integral).
93 *
94 * \tparam realT the real floating point type
95 *
96 * \test Scenario: calculating variance from a 1D PSD. \ref tests_sigproc_psdUtils_psdVar_1D "[test doc]"
97 */
98template <typename realT>
99realT psdVar2sided( realT df, ///< [in] the frequency scale of the PSD
100 const realT *PSD, ///< [in] the PSD to integrate.
101 size_t sz, ///< [in] the size of the PSD vector
102 realT half = 0.5 ///< [in] [optional] controls if trapezoid (0.5) or mid-point (1.0) integration is
103 ///< used. Do not use other values.
104)
105{
106 realT var = 0;
107
108 var = PSD[0];
109
110 size_t i = 1;
111 for( ; i < sz / 2; ++i )
112 {
113 var += PSD[i];
114 var += PSD[sz - i];
115 }
116 var += half * PSD[i]; // The mid-point is double. It is also the endpoint of integration from each side, so it
117 // would enter twice, hence once here.
118
119 var *= df;
120
121 return var;
122}
123
124/// Calculate the variance of a 1-D PSD
125/** By default uses trapezoid rule integration. This can be changed to mid-point integration.
126 *
127 * If f.back() < 0, then a 2-sided PSD in FFT storage order is assumed. Otherwise, PSD is treated as 1-sided.
128 *
129 * \returns the variance of a PSD (the integral).
130 *
131 * \tparam realT the real floating point type
132 *
133 * \test Scenario: calculating variance from a 1D PSD. \ref tests_sigproc_psdUtils_psdVar_1D "[test doc]"
134 */
135template <typename realT>
136realT psdVar( const std::vector<realT> &f, ///< [in] the frequency scale of the PSD.
137 const std::vector<realT> &PSD, ///< [in] the PSD to integrate.
138 realT half = 0.5 ///< [in] [optional] controls if trapezoid (0.5) or mid-point (1.0) integration is used.
139 ///< Do not use other values.
140)
141{
142 if( f.back() < 0 )
143 return psdVar2sided( f[1] - f[0], PSD.data(), PSD.size(), half );
144 else
145 return psdVar1sided( f[1] - f[0], PSD.data(), PSD.size(), half );
146}
147
148/// Calculate the variance of a PSD
149/** By default uses trapezoid rule integration. This can be changed to mid-point integration.
150 *
151 * \overload
152 *
153 * \returns the variance of a PSD (the integral).
154 *
155 * \tparam realT the real floating point type
156 */
157template <typename eigenArrT>
158typename eigenArrT::Scalar psdVarDisabled(
159 eigenArrT &freq, ///< [in] the frequency scale of the PSD
160 eigenArrT &PSD, ///< [in] the PSD to integrate.
161 bool trap = true ///< [in] [optional] controls if trapezoid (true) or mid-point (false) integration is used.
162)
163{
164 typename eigenArrT::Scalar half = 0.5;
165 if( !trap )
166 half = 1.0;
167
168 typename eigenArrT::Scalar var = 0;
169
170 var = half * PSD( 0, 0 );
171
172 for( int i = 1; i < freq.rows() - 1; ++i )
173 var += PSD( i, 0 );
174
175 var += half * PSD( freq.rows() - 1, 0 );
176
177 var *= ( freq( 1, 0 ) - freq( 0, 0 ) );
178
179 return var;
180}
181
182/// Calculates the frequency sampling for a grid given maximum dimension and maximum frequency.
183/** The freq_sampling is
184 * @f$ \Delta f = f_{max}/ (0.5*dim) @f$
185 * where @f$ f_{max} = 1/(2\Delta t) @f$ is the maximum frequency and @f$ dim @f$ is the size of the grid.
186 *
187 * \param [in] dim is the size of the grid
188 * \param [in] f_max is the maximum frequency of the grid
189 *
190 * \returns the sampling interval @f$ \delta f @f$
191 *
192 * \tparam realT is the real floating point type used for calculations.
193 *
194 */
195template <class realT>
196realT freq_sampling( size_t dim, realT f_max )
197{
198 return ( f_max / ( 0.5 * dim ) );
199}
200
201#if 0
202///Create a 1-D frequency grid
203/**
204 * \param [out] vec the pre-allocated Eigen-type 1xN or Nx1 array, on return contains the frequency grid
205 * \param [in] dt the temporal sampling of the time series
206 * \param [in] inverse [optional] if true
207 *
208 * \tparam eigenArr the Eigen-like array type
209 */
210template<typename eigenArr>
211void frequency_grid1D( eigenArr & vec,
212 typename eigenArr::Scalar dt,
213 bool inverse = false )
214{
215 typename eigenArr::Index dim, dim_1, dim_2;
216 typename eigenArr::Scalar df;
217
218 dim_1 = vec.rows();
219 dim_2 = vec.cols();
220
221 dim = std::max(dim_1, dim_2);
222
223 df = freq_sampling(dim, 0.5/dt);
224
225 if( !inverse )
226 {
227 for(int ii=0; ii < ceil(0.5*(dim-1) + 1); ++ii)
228 {
229 vec(ii) = ii*df;
230 }
231
232 for(int ii=ceil(0.5*(dim-1)+1); ii < dim_1; ++ii)
233 {
234 vec(ii) = (ii-dim)*df;
235 }
236 }
237 else
238 {
239 for(int ii=0; ii < dim; ++ii)
240 {
241 vec(ii) = df * ii / dim;
242 }
243 }
244}
245#endif
246
247/// Create a 1-D frequency grid
248/**
249 *
250 * \tparam realT a real floating point type
251 * \tparam realParamT a real floating point type, convenience to avoid double-float confusion.
252 *
253 * \test Verify creation of a 1D frequency grid \ref tests_sigproc_psdUtils_frequencyGrid_1D "[test doc]"
254 */
255template <typename realT, typename realParamT>
257 std::vector<realT> &vec, ///< [out] vec the pre-allocated vector, on return contains the frequency grid
258 realParamT dt, ///< [in] dt the temporal sampling of the time series
259 bool fftOrder = true ///< [in] fftOrder [optional] if true the frequency grid is in FFT order
260)
261{
262 realT dtTT = dt;
263
264 if( fftOrder )
265 {
266 if( vec.size() % 2 == 1 )
267 {
268 mxError( "frequencyGrid", MXE_INVALIDARG, "Frequency scale can't be odd-sized for FFT order" );
269 return -1;
270 }
271
272 realT df = ( 1.0 / dtTT ) / ( (realT)vec.size() );
273
274 for( ssize_t ii = 0; ii < ceil( 0.5 * ( vec.size() - 1 ) + 1 ); ++ii )
275 {
276 vec[ii] = ii * df;
277 }
278
279 for( ssize_t ii = ceil( 0.5 * ( vec.size() - 1 ) + 1 ); ii < vec.size(); ++ii )
280 {
281 vec[ii] = ( ii - (ssize_t)vec.size() ) * df;
282 }
283
284 return 0;
285 }
286 else
287 {
288 if( vec.size() % 2 == 0 )
289 {
290 realT df = ( 0.5 / dtTT ) / ( (realT)vec.size() - 1 );
291 for( int ii = 0; ii < vec.size(); ++ii )
292 {
293 vec[ii] = df * ii;
294 }
295
296 return 0;
297 }
298 else
299 {
300 realT df = ( 0.5 / dt ) / ( (realT)vec.size() );
301 for( int ii = 0; ii < vec.size(); ++ii )
302 {
303 vec[ii] = df * ( ii + 1 );
304 }
305
306 return 0;
307 }
308 }
309}
310
311/// Create a 2-D frequency grid
312template <typename eigenArr, typename realParamT>
313void frequencyGrid( eigenArr &arr, realParamT drT, eigenArr *k_x, eigenArr *k_y )
314{
315 typename eigenArr::Scalar dr = drT;
316
317 typename eigenArr::Index dim_1, dim_2;
318 typename eigenArr::Scalar k_1, k_2, df;
319
320 dim_1 = arr.rows();
321 dim_2 = arr.cols();
322
323 if( k_x )
324 k_x->resize( dim_1, dim_2 );
325 if( k_y )
326 k_y->resize( dim_1, dim_2 );
327
328 df = freq_sampling( std::max( dim_1, dim_2 ), 0.5 / dr );
329
330 for( int ii = 0; ii < 0.5 * ( dim_1 - 1 ) + 1; ++ii )
331 {
332 k_1 = ii * df;
333 for( int jj = 0; jj < 0.5 * ( dim_2 - 1 ) + 1; ++jj )
334 {
335 k_2 = jj * df;
336
337 arr( ii, jj ) = sqrt( k_1 * k_1 + k_2 * k_2 );
338
339 if( k_x )
340 ( *k_x )( ii, jj ) = k_1;
341 if( k_x )
342 ( *k_y )( ii, jj ) = k_2;
343 }
344
345 for( int jj = 0.5 * ( dim_2 - 1 ) + 1; jj < dim_2; ++jj )
346 {
347 k_2 = ( jj - dim_2 ) * df;
348
349 arr( ii, jj ) = sqrt( k_1 * k_1 + k_2 * k_2 );
350
351 if( k_x )
352 ( *k_x )( ii, jj ) = k_1;
353 if( k_x )
354 ( *k_y )( ii, jj ) = k_2;
355 }
356 }
357
358 for( int ii = 0.5 * ( dim_1 - 1 ) + 1; ii < dim_1; ++ii )
359 {
360 k_1 = ( ii - dim_1 ) * df;
361 for( int jj = 0; jj < 0.5 * ( dim_2 - 1 ) + 1; ++jj )
362 {
363 k_2 = jj * df;
364
365 arr( ii, jj ) = sqrt( k_1 * k_1 + k_2 * k_2 );
366
367 if( k_x )
368 ( *k_x )( ii, jj ) = k_1;
369 if( k_x )
370 ( *k_y )( ii, jj ) = k_2;
371 }
372
373 for( int jj = 0.5 * ( dim_2 - 1 ) + 1; jj < dim_2; ++jj )
374 {
375 k_2 = ( jj - dim_2 ) * df;
376
377 arr( ii, jj ) = sqrt( k_1 * k_1 + k_2 * k_2 );
378
379 if( k_x )
380 ( *k_x )( ii, jj ) = k_1;
381 if( k_x )
382 ( *k_y )( ii, jj ) = k_2;
383 }
384 }
385}
386
387/// Create a frequency grid
388template <typename eigenArr>
389void frequencyGrid( eigenArr &arr, typename eigenArr::Scalar dt )
390{
391 frequencyGrid( arr, dt, (eigenArr *)0, (eigenArr *)0 );
392}
393
394/// Create a frequency grid
395template <typename eigenArr>
396void frequencyGrid( eigenArr &arr, typename eigenArr::Scalar dt, eigenArr &k_x, eigenArr &k_y )
397{
398 frequencyGrid( arr, dt, &k_x, &k_y );
399}
400
401/// Calculate the normalization for a 1-D @f$ 1/|f|^\alpha @f$ PSD.
402/**
403 * \param [in] fmin is the minimum non-zero absolute value of frequency
404 * \param [in] fmax is the maximum absolute value of frequencey
405 * \param [in] alpha is the power-law exponent, by convention @f$ \alpha > 0 @f$.
406 *
407 * \returns the normalization for a 2-sided power law PSD.
408 *
409 * \tparam realT is the real floating point type used for calculations.
410 */
411template <typename realT>
412realT oneoverf_norm( realT fmin, realT fmax, realT alpha )
413{
414 realT integ = 2 * ( pow( fmax, -1.0 * alpha + 1.0 ) - pow( fmin, -1.0 * alpha + 1.0 ) ) / ( -1.0 * alpha + 1.0 );
415
416 return 1 / integ;
417}
418
419/// Calculate the normalization for a 2-D @f$ 1/|k|^\alpha @f$ PSD.
420/**
421 * \param [in] kmin is the minimum non-zero absolute value of frequency
422 * \param [in] kmax is the maximum absolute value of frequencey
423 * \param [in] alpha is the power-law exponent, by convention @f$ \alpha > 0 @f$.
424 *
425 * \returns the normalization for a 2-D, 2-sided power law PSD.
426 *
427 * \tparam realT is the real floating point type used for calculations.
428 */
429template <typename realT>
430realT oneoverk_norm( realT kmin, realT kmax, realT alpha )
431{
432 realT integ = 2 * ( pow( kmax, -1 * alpha + 2.0 ) - pow( kmin, -1.0 * alpha + 2.0 ) ) / ( -1 * alpha + 2.0 );
433
434 return 1 / integ;
435}
436
437/// Normalize a 1-D PSD to have a given variance
438/** A frequency range can be specified to calculate the norm, otherwise f[0] to f[f.size()-1] is the range. The entire
439 * PSD is normalized regardless.
440 *
441 * \tparam floatT the floating point type of the PSD.
442 * \tparam floatParamT a floating point type, convenience to avoid double-float cofusion.
443 *
444 * \test Verify scaling and normalization of augment1SidedPSD \ref tests_sigproc_psdUtils_augment1SidedPSD "[test doc]"
445 */
446template <typename floatT, typename floatParamT>
447int normPSD( std::vector<floatT> &psd, ///< [in.out] the PSD to normalize, will be altered.
448 std::vector<floatT> &f, ///< [in] the frequency points for the PSD
449 floatParamT normT, ///< [in] the desired total variance (or integral) of the PSD.
450 floatT fmin = std::numeric_limits<floatT>::min(), ///< [in] [optiona] the minimum frequency of the range
451 ///< over which to normalize.
452 floatT fmax = std::numeric_limits<floatT>::max() ///< [in] [optiona] the maximum frequency of the range
453 ///< over which to normalize.
454)
455{
456 floatT norm = normT;
457
458 floatT s = 0; // accumulate
459
460 // Check if inside-the-loop branch is needed
461 if( fmin != std::numeric_limits<floatT>::min() || fmax != std::numeric_limits<floatT>::max() )
462 {
463 for( size_t i = 0; i < psd.size(); ++i )
464 {
465 if( fabs( f[i] ) < fmin || fabs( f[i] ) > fmax )
466 continue;
467 s += psd[i];
468 }
469 }
470 else
471 {
472 for( size_t i = 0; i < psd.size(); ++i )
473 {
474 s += psd[i];
475 }
476 }
477
478 s *= ( f[1] - f[0] );
479
480 for( size_t i = 0; i < psd.size(); ++i )
481 psd[i] *= norm / s;
482
483 return 0;
484}
485
486/// Normalize a 2-D PSD to have a given variance
487/** A frequency range can be specified for calculating the norm, otherwise the entire PSD is used. The entire PSD is
488 * normalized regardless.
489 *
490 * \tparam floatT the floating point type of the PSD.
491 * \tparam floatParamT a floating point type, convenience to avoid double-float cofusion.
492 *
493 * \test Verify scaling and normalization of augment1SidedPSD \ref tests_sigproc_psdUtils_augment1SidedPSD "[test doc]"
494 */
495template <typename floatT, typename floatParamT>
496floatT
497normPSD( Eigen::Array<floatT, Eigen::Dynamic, Eigen::Dynamic> &psd, ///< [in.out] the PSD to normalize, will be altered.
498 Eigen::Array<floatT, Eigen::Dynamic, Eigen::Dynamic> &k, ///< [in] the frequency grid for psd.
499 floatParamT normT, ///< [in] the desired total variance (or integral) of the PSD.
500 floatT kmin = std::numeric_limits<floatT>::min(), ///< [in] [optiona] the minimum frequency of the range over
501 ///< which to normalize.
502 floatT kmax = std::numeric_limits<floatT>::max() ///< [in] [optiona] the maximum frequency of the range over
503 ///< which to normalize.
504)
505{
506 floatT norm = normT;
507
508 floatT dk1, dk2;
509
510 if( k.rows() > 1 )
511 dk1 = k( 1, 0 ) - k( 0, 0 );
512 else
513 dk1 = 1;
514
515 if( k.cols() > 1 )
516 dk2 = k( 0, 1 ) - k( 0, 0 );
517 else
518 dk2 = 1;
519
520 floatT s = 0;
521
522 // Check if inside-the-loop branch is needed
523 if( kmin != std::numeric_limits<floatT>::min() || kmax != std::numeric_limits<floatT>::max() )
524 {
525 for( int c = 0; c < psd.cols(); ++c )
526 {
527 for( int r = 0; r < psd.rows(); ++r )
528 {
529 if( fabs( k( r, c ) ) < kmin || fabs( k( r, c ) ) > kmax )
530 continue;
531 s += psd( r, c );
532 }
533 }
534 }
535 else
536 {
537 for( int c = 0; c < psd.cols(); ++c )
538 {
539 for( int r = 0; r < psd.rows(); ++r )
540 {
541 s += psd( r, c );
542 }
543 }
544 }
545
546 s *= dk1 * dk2;
547
548 for( int c = 0; c < psd.cols(); ++c )
549 {
550 for( int r = 0; r < psd.rows(); ++r )
551 {
552 psd( r, c ) *= norm / s;
553 }
554 }
555
556 return 0;
557}
558
559/// Generates a @f$ 1/|f|^\alpha @f$ power spectrum
560/**
561 * Populates an Eigen array with
562 * \f[
563 * P(|f| = 0) = 0
564 * \f]
565 * \f[
566 * P(|f| > 0) = \frac{\beta}{|f|^{\alpha}}
567 * \f]
568 *
569 *
570 * \param [out] psd is the array to populate
571 * \param [in] freq is a frequency grid, must be the same logical size as psd
572 * \param [in] alpha is the power law exponent, by convention @f$ alpha > 0 @f$.
573 * \param [in] beta [optional is a normalization constant to multiply the raw spectrum by. If beta==-1 (default) then
574 * the PSD is normalized using \ref oneoverf_norm.
575 *
576 * \tparam eigenArrp is the Eigen-like array type of the psd
577 * \tparam eigenArrf is the Eigen-like array type of the frequency grid
578 */
579template <typename eigenArrp, typename eigenArrf>
580void oneoverf_psd( eigenArrp &psd,
581 eigenArrf &freq,
582 typename eigenArrp::Scalar alpha,
583 typename eigenArrp::Scalar beta = -1 )
584{
585 typedef typename eigenArrp::Scalar Scalar;
586
587 typename eigenArrp::Index dim_1, dim_2;
588 Scalar f_x, f_y, p;
589
590 dim_1 = psd.rows();
591 dim_2 = psd.cols();
592
593 if( beta == -1 )
594 {
595 Scalar fmin;
596 Scalar fmax;
597
598 fmax = freq.abs().maxCoeff();
599
600 // Find minimum non-zero Coeff.
601 fmin = ( freq.abs() > 0 ).select( freq.abs(), freq.abs() + fmax ).minCoeff();
602
603 beta = oneoverf_norm( fmin, fmax, alpha );
604 }
605
606 for( int ii = 0; ii < dim_1; ++ii )
607 {
608 for( int jj = 0; jj < dim_2; ++jj )
609 {
610 if( freq( ii, jj ) == 0 )
611 {
612 p = 0;
613 }
614 else
615 {
616 p = beta / std::pow( std::abs( freq( ii, jj ) ), alpha );
617 }
618 psd( ii, jj ) = p;
619 }
620 }
621}
622
623/// Generate a 1-D von Karman power spectrum
624/**
625 * Populates an Eigen array with
626 *
627 * \f[
628 * P(f) = \frac{\beta}{ (f^2 + (1/T_0)^2)^{\alpha/2}} e^{ - f^2 t_0^2}
629 * \f]
630 *
631 * If you set \f$ T_0 \le 0 \f$ and \f$ t_0 = 0\f$ this reverts to a simple \f$ 1/f^\alpha \f$ law (i.e.
632 * it treats this as infinite outer scale and inner scale).
633 *
634 *
635 * \tparam floatT a floating point
636 */
637template <typename floatT,
638 typename floatfT,
639 typename alphaT,
640 typename T0T = double,
641 typename t0T = double,
642 typename betaT = double>
643int vonKarmanPSD( std::vector<floatT> &psd, ///< [out] the PSD vector, will be resized.
644 std::vector<floatfT> &f, ///< [in] the frequency vector
645 alphaT alpha, ///< [in] the exponent, by convention @f$ alpha > 0 @f$.
646 T0T T0 = 0, ///< [in] the outer scale, default is 0 (not used).
647 t0T t0 = 0, ///< [in] the inner scale, default is 0 (not used).
648 betaT beta = 1 ///< [in] the scaling constant, default is 1
649)
650{
651
652#ifndef MX_VKPSD_REFACT
653 static_assert( 0 * std::is_floating_point<floatT>::value,
654 "the 1D vonKarmanPSD has been refactored. After modifying your code to match, you must define "
655 "MX_VKPSD_REFACT before including psdUtils.hpp to avoid this error." );
656#endif
657
658 floatT T02;
659 if( T0 > 0 )
660 T02 = 1.0 / ( T0 * T0 );
661 else
662 T02 = 0;
663
664 floatT sqrt_alpha = 0.5 * alpha;
665
666 floatT _beta;
667 if( beta <= 0 )
668 _beta = 1;
669 else
670 _beta = beta;
671
672 psd.resize( f.size() );
673
674 for( size_t i = 0; i < f.size(); ++i )
675 {
676 floatT p = _beta / pow( pow( f[i], 2 ) + T02, sqrt_alpha );
677 if( t0 > 0 )
678 p *= exp( -1 * pow( f[i] * static_cast<floatT>( t0 ), 2 ) );
679 psd[i] = p;
680 }
681
682 return 0;
683}
684
685/// Generate a 1-D "knee" PSD
686/**
687 * Populates an Eigen array with
688 *
689 * \f[
690 * P(f) = \frac{\beta}{ 1 + (f/f_n)^{\alpha}}
691 * \f]
692 *
693 * If you set \f$ T_0 \le 0 \f$ and \f$ t_0 = 0\f$ this reverts to a simple \f$ 1/f^\alpha \f$ law (i.e.
694 * it treats this as infinite outer scale and inner scale).
695 *
696 * \tparam floatT a floating point
697 */
698template <typename floatT>
699int kneePSD( std::vector<floatT> &psd, ///< [out] the PSD vector, will be resized.
700 std::vector<floatT> &f, ///< [in] the frequency vector
701 floatT beta, ///< [in] the scaling constant
702 floatT fn, ///< [in] the knee frequency
703 floatT alpha ///< [in] the exponent, by convention @f$ alpha > 0 @f$.
704)
705{
706
707 psd.resize( f.size() );
708
709 for( int i = 0; i < f.size(); ++i )
710 {
711 floatT p = beta / ( 1 + pow( f[i] / fn, alpha ) );
712 psd[i] = p;
713 }
714
715 return 0;
716}
717
718/// Generates a von Karman power spectrum
719/**
720 * Populates an Eigen array with
721 *
722 * \f[
723 * P(k) = \frac{\beta}{ (k^2 + (1/L_0)^2)^{\alpha/2}} e^{ - k^2 l_0^2}
724 * \f]
725 *
726 * If you set \f$ L_0 \le 0 \f$ and \f$ l_0 = 0\f$ this reverts to a simple \f$ 1/f^\alpha \f$ law (i.e.
727 * it treats this as infinite outer scale and inner scale).
728 *
729 * \param [out] psd is the array to populate, allocated.
730 * \param [in] freq is a frequency grid, must be the same logical size as psd
731 * \param [in] alpha is the power law exponent, by convention @f$ alpha > 0 @f$.
732 * \param [in] L0 [optional] is the outer scale.
733 * \param [in] l0 [optional] is the inner scale.
734 * \param [in] beta [optional] is a normalization constant to multiply the raw spectrum by. If beta==-1 (default) then
735 * the PSD is normalized using \ref oneoverf_norm.
736 *
737 * \tparam eigenArrp is the Eigen array type of the psd
738 * \tparam eigenArrf is the Eigen array type of the frequency grid
739 */
740template <typename eigenArrp, typename eigenArrf, typename alphaT, typename L0T, typename l0T, typename betaT>
741void vonKarmanPSD( eigenArrp &psd, eigenArrf &freq, alphaT alpha, L0T L0 = 0, l0T l0 = 0, betaT beta = -1 )
742{
743 typedef typename eigenArrp::Scalar Scalar;
744
745 typename eigenArrp::Index dim_1, dim_2;
746 Scalar p;
747
748 dim_1 = psd.rows();
749 dim_2 = psd.cols();
750
751 Scalar _beta;
752
753 if( beta == -1 )
754 {
755 Scalar fmin;
756 Scalar fmax;
757
758 fmax = freq.abs().maxCoeff();
759
760 // Find minimum non-zero Coeff.
761 fmin = ( freq.abs() > 0 ).select( freq.abs(), freq.abs() + fmax ).minCoeff();
762
763 _beta = beta = oneoverf_norm( fmin, fmax, static_cast<Scalar>( alpha ) );
764 }
765 else
766 _beta = static_cast<Scalar>( beta );
767
768 Scalar L02;
769 if( L0 > 0 )
770 L02 = 1.0 / ( L0 * L0 );
771 else
772 L02 = 0;
773
774 Scalar sqrt_alpha = 0.5 * alpha; // std::sqrt(alpha);
775
776 for( int ii = 0; ii < dim_1; ++ii )
777 {
778 for( int jj = 0; jj < dim_2; ++jj )
779 {
780 if( freq( ii, jj ) == 0 && L02 == 0 )
781 {
782 p = 0;
783 }
784 else
785 {
786 p = _beta / pow( pow( freq( ii, jj ), 2 ) + L02, sqrt_alpha );
787 if( l0 > 0 )
788 p *= exp( -1 * pow( freq( ii, jj ) * static_cast<Scalar>( l0 ), 2 ) );
789 }
790 psd( ii, jj ) = p;
791 }
792 }
793}
794
795/// Augment a 1-sided PSD to standard 2-sided FFT form.
796/** Allocates psdTwoSided to hold a flipped copy of psdOneSided.
797 * Default assumes that psdOneSided[0] corresponds to 0 frequency,
798 * but this can be changed by setting zeroFreq to a non-zero value.
799 * In this case psdTwoSided[0] is set to 0, and the augmented psd
800 * is shifted by 1.
801 *
802 * To illustrate, the bins are re-ordered as:
803 * \verbatim
804 * {1,2,3,4,5} --> {0,1,2,3,4,5,-4,-3,-2,-1}
805 * \endverbatim
806 *
807 * The output is scaled so that the total power remains the same. The 0-freq and
808 * Nyquist freq are not scaled.
809 *
810 *
811 * Entries in psdOneSided are cast to the value_type of psdTwoSided,
812 * for instance to allow for conversion to complex type.
813 *
814 * \test Verify scaling and normalization of augment1SidedPSD \ref tests_sigproc_psdUtils_augment1SidedPSD "[test doc]"
815 */
816template <typename vectorTout, typename vectorTin>
818 vectorTout &psdTwoSided, ///< [out] on return contains the FFT storage order copy of psdOneSided.
819 vectorTin &psdOneSided, ///< [in] the one-sided PSD to augment
820 bool addZeroFreq =
821 false, ///< [in] [optional] set to true if psdOneSided does not contain a zero frequency component.
822 typename vectorTin::value_type scale = 0.5 ///< [in] [optional] value to scale the input by when copying to the
823 ///< output. The default 0.5 re-normalizes for a 2-sided PSD.
824)
825{
826 typedef typename vectorTout::value_type outT;
827
828 bool needZero = 1;
829
830 size_t N;
831
832 if( addZeroFreq == 0 )
833 {
834 needZero = 0;
835 N = 2 * psdOneSided.size() - 2;
836 }
837 else
838 {
839 N = 2 * psdOneSided.size();
840 }
841
842 psdTwoSided.resize( N );
843
844 // First set the 0-freq point
845 if( needZero )
846 {
847 psdTwoSided[0] = outT( 0.0 );
848 }
849 else
850 {
851 psdTwoSided[0] = outT( psdOneSided[0] );
852 }
853
854 // Now set all the rest.
855 unsigned long i;
856 for( i = 0; i < psdOneSided.size() - 1 - ( 1 - needZero ); ++i )
857 {
858 psdTwoSided[i + 1] = outT( psdOneSided[i + ( 1 - needZero )] * scale );
859 psdTwoSided[i + psdOneSided.size() + needZero] = outT( psdOneSided[psdOneSided.size() - 2 - i] * scale );
860 }
861 psdTwoSided[i + 1] = outT( psdOneSided[i + ( 1 - needZero )] );
862}
863
864/// Augment a 1-sided frequency scale to standard FFT form.
865/** Allocates freqTwoSided to hold a flipped copy of freqOneSided.
866 * If freqOneSided[0] is not 0, freqTwoSided[0] is set to 0, and the augmented
867 * frequency scale is shifted by 1.
868 *
869 * Example:
870 *
871 * {1,2,3,4,5} --> {0,1,2,3,4,5,-4,-3,-2,-1}
872 *
873 * \test Verify scaling and normalization of augment1SidedPSD \ref tests_sigproc_psdUtils_augment1SidedPSD "[test doc]"
874 */
875template <typename T>
877 std::vector<T> &freqTwoSided, ///< [out] on return contains the FFT storage order copy of freqOneSided.
878 std::vector<T> &freqOneSided ///< [in] the one-sided frequency scale to augment
879)
880{
881 int needZero = 1;
882
883 size_t N;
884
885 if( freqOneSided[0] != 0 )
886 {
887 N = 2 * freqOneSided.size();
888 }
889 else
890 {
891 needZero = 0;
892 N = 2 * freqOneSided.size() - 2;
893 }
894
895 freqTwoSided.resize( N );
896
897 if( needZero )
898 {
899 freqTwoSided[0] = 0.0;
900 }
901 else
902 {
903 freqTwoSided[0] = freqOneSided[0]; // 0
904 }
905
906 int i;
907 for( i = 0; i < freqOneSided.size() - 1 - ( 1 - needZero ); ++i )
908 {
909 freqTwoSided[i + 1] = freqOneSided[i + ( 1 - needZero )];
910 freqTwoSided[i + freqOneSided.size() + needZero] = -freqOneSided[freqOneSided.size() - 2 - i];
911 }
912 freqTwoSided[i + 1] = freqOneSided[i + ( 1 - needZero )];
913}
914
915/// Rebin a PSD, including its frequency scale, to a larger frequency bin size (fewer bins)
916/** The rebinning uses trapezoid integration within bins to ensure minimum signal loss.
917 *
918 * Maintains DFT sampling. That is, if initial frequency grid is 0,0.1,0.2...
919 * and the binSize is 1.0, the new grid will be 0,1,2 (as opposed to 0.5, 1.5, 2.5).
920 *
921 * This introduces a question of what to do with first half-bin, which includes 0. It can be
922 * integrated (binAtZero = true, the default). This may cause inaccurate behavior if the value of the PSD when
923 * f=0 is important (e.g. when analyzing correlated noise), so setting binAtZero=false causes the f=0 value to be
924 * copied (using the nearest neighbor if no f=0 point is in the input.
925 *
926 * The last half bin is always integrated.
927 *
928 * The output is variance normalized to match the input variance.
929 *
930 * \tparam realT the real floating point type
931 */
932template <typename realT>
933int rebin1SidedPSD( std::vector<realT> &binFreq, ///< [out] the binned frequency scale, resized.
934 std::vector<realT> &binPSD, ///< [out] the binned PSD, resized.
935 std::vector<realT> &freq, ///< [in] the frequency scale of the PSD to bin.
936 std::vector<realT> &PSD, ///< [in] the PSD to bin.
937 realT binSize, ///< [in] in same units as freq
938 bool binAtZero = true ///< [in] [optional] controls whether the zero point is binned or copied.
939)
940{
941 binFreq.clear();
942 binPSD.clear();
943
944 realT sumPSD = 0;
945 realT startFreq = 0;
946 realT sumFreq = 0;
947 int nSum = 0;
948
949 int i = 0;
950
951 realT df = freq[1] - freq[0];
952
953 // Now move to first bin
954 while( freq[i] <= 0.5 * binSize + 0.5 * df )
955 {
956 sumPSD += PSD[i];
957 ++nSum;
958 ++i;
959 if( i >= freq.size() )
960 break;
961 }
962
963 if( !binAtZero )
964 {
965 binFreq.push_back( 0 );
966 binPSD.push_back( PSD[0] );
967 }
968 else
969 {
970 binFreq.push_back( 0 );
971 binPSD.push_back( sumPSD / nSum );
972 }
973
974 --i;
975 startFreq = freq[i];
976 nSum = 0;
977 sumFreq = 0;
978 sumPSD = 0;
979
980 while( i < freq.size() )
981 {
982 realT sc = 0.5; // First one is multiplied by 1/2 for trapezoid rule.
983 while( freq[i] - startFreq + 0.5 * df < binSize )
984 {
985 sumFreq += freq[i];
986 sumPSD += sc * PSD[i];
987 sc = 1.0;
988 ++nSum;
989
990 ++i;
991 if( i >= freq.size() - 1 )
992 break; // break 1 element early so last point is mult by 0.5
993 }
994
995 if( i < freq.size() )
996 {
997 sumFreq += freq[i];
998 sumPSD += 0.5 * PSD[i]; // last one is multiplied by 1/2 for trapezoid rule
999 ++nSum;
1000 ++i;
1001 }
1002
1003 // Check if this is last point
1004 if( i < freq.size() )
1005 {
1006 binFreq.push_back( sumFreq / nSum );
1007 }
1008 else
1009 {
1010 // last point frequencyis not averaged.
1011 binFreq.push_back( freq[freq.size() - 1] );
1012 }
1013
1014 binPSD.push_back( sumPSD / ( nSum - 1 ) );
1015
1016 sumFreq = 0;
1017 sumPSD = 0;
1018 nSum = 0;
1019 if( i >= freq.size() )
1020 break;
1021
1022 --i; // Step back one, so averages are edge to edge.
1023
1024 startFreq = freq[i];
1025 }
1026
1027 // Now normalize variance
1028 realT var = psdVar( freq, PSD );
1029 realT binv = psdVar( binFreq, binPSD );
1030
1031 for( int i = 0; i < binFreq.size(); ++i )
1032 binPSD[i] *= var / binv;
1033
1034 return 0;
1035}
1036///@}
1037
1038} // namespace sigproc
1039} // namespace mx
1040
1041#endif // psdUtils_hpp
void oneoverf_psd(eigenArrp &psd, eigenArrf &freq, typename eigenArrp::Scalar alpha, typename eigenArrp::Scalar beta=-1)
Generates a power spectrum.
Definition psdUtils.hpp:580
realT oneoverf_norm(realT fmin, realT fmax, realT alpha)
Calculate the normalization for a 1-D PSD.
Definition psdUtils.hpp:412
void augment1SidedPSD(vectorTout &psdTwoSided, vectorTin &psdOneSided, bool addZeroFreq=false, typename vectorTin::value_type scale=0.5)
Augment a 1-sided PSD to standard 2-sided FFT form.
Definition psdUtils.hpp:817
eigenArrT::Scalar psdVarDisabled(eigenArrT &freq, eigenArrT &PSD, bool trap=true)
Calculate the variance of a PSD.
Definition psdUtils.hpp:158
realT oneoverk_norm(realT kmin, realT kmax, realT alpha)
Calculate the normalization for a 2-D PSD.
Definition psdUtils.hpp:430
realT psdVar1sided(realT df, const realT *PSD, size_t sz, realT half=0.5)
Calculate the variance of a 1-D, 1-sided PSD.
Definition psdUtils.hpp:66
int vonKarmanPSD(std::vector< floatT > &psd, std::vector< floatfT > &f, alphaT alpha, T0T T0=0, t0T t0=0, betaT beta=1)
Generate a 1-D von Karman power spectrum.
Definition psdUtils.hpp:643
void augment1SidedPSDFreq(std::vector< T > &freqTwoSided, std::vector< T > &freqOneSided)
Augment a 1-sided frequency scale to standard FFT form.
Definition psdUtils.hpp:876
realT psdVar(const std::vector< realT > &f, const std::vector< realT > &PSD, realT half=0.5)
Calculate the variance of a 1-D PSD.
Definition psdUtils.hpp:136
realT psdVar2sided(realT df, const realT *PSD, size_t sz, realT half=0.5)
Calculate the variance of a 1-D, 2-sided PSD.
Definition psdUtils.hpp:99
void frequency_grid1D(eigenArr &vec, typename eigenArr::Scalar dt, bool inverse=false)
Create a 1-D frequency grid.
Definition psdUtils.hpp:211
realT freq_sampling(size_t dim, realT f_max)
Calculates the frequency sampling for a grid given maximum dimension and maximum frequency.
Definition psdUtils.hpp:196
int kneePSD(std::vector< floatT > &psd, std::vector< floatT > &f, floatT beta, floatT fn, floatT alpha)
Generate a 1-D "knee" PSD.
Definition psdUtils.hpp:699
int normPSD(std::vector< floatT > &psd, std::vector< floatT > &f, floatParamT normT, floatT fmin=std::numeric_limits< floatT >::min(), floatT fmax=std::numeric_limits< floatT >::max())
Normalize a 1-D PSD to have a given variance.
Definition psdUtils.hpp:447
int frequencyGrid(std::vector< realT > &vec, realParamT dt, bool fftOrder=true)
Create a 1-D frequency grid.
Definition psdUtils.hpp:256
int rebin1SidedPSD(std::vector< realT > &binFreq, std::vector< realT > &binPSD, std::vector< realT > &freq, std::vector< realT > &PSD, realT binSize, bool binAtZero=true)
Rebin a PSD, including its frequency scale, to a larger frequency bin size (fewer bins)
Definition psdUtils.hpp:933
The mxlib c++ namespace.
Definition mxError.hpp:106