mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
Power Spectra

Tools for generating and manipulating power spectra

The mxlib PSD utilities are based on the variance normalization for PSDs. For a 1-sided 1-dimensional PSD that is

\[ \sigma^2 = \int_0^{f_{max}} PSD(f) df \]

or for a 2-sided 1-D PSD

\[ \sigma^2 = \int_{f_{min}}^{f_{max}} PSD(f) df. \]

More generally

\[ \sigma^2 = \int_{\vec{k}} PSD(\vec{k}) d\vec{k}. \]

Classes

class  mx::sigproc::averagePeriodogram< realT >
 Calculate the average periodogram of a time-series. More...
 
struct  mx::sigproc::psdVarMean< paramsT >
 Calculate the variance of the mean for a process given its PSD. More...
 

Modules

 Autoregressive Power Spectra
 
 PSD Filter
 Filtering with a PSD to generate correlated noise.
 

Function Documentation

◆ augment1SidedPSD()

template<typename vectorTout , typename vectorTin >
void mx::sigproc::augment1SidedPSD ( vectorTout &  psdTwoSided,
vectorTin &  psdOneSided,
bool  addZeroFreq = false,
typename vectorTin::value_type  scale = 0.5 
)

Augment a 1-sided PSD to standard 2-sided FFT form.

Allocates psdTwoSided to hold a flipped copy of psdOneSided. Default assumes that psdOneSided[0] corresponds to 0 frequency, but this can be changed by setting zeroFreq to a non-zero value. In this case psdTwoSided[0] is set to 0, and the augmented psd is shifted by 1.

To illustrate, the bins are re-ordered as:

* {1,2,3,4,5} --> {0,1,2,3,4,5,-4,-3,-2,-1}
* 

The output is scaled so that the total power remains the same. The 0-freq and Nyquist freq are not scaled.

Entries in psdOneSided are cast to the value_type of psdTwoSided, for instance to allow for conversion to complex type.

Test:
Verify scaling and normalization of augment1SidedPSD [test doc]
Parameters
[out]psdTwoSidedon return contains the FFT storage order copy of psdOneSided.
[in]psdOneSidedthe one-sided PSD to augment
[in]addZeroFreq[optional] set to true if psdOneSided does not contain a zero frequency component.
[in]scale[optional] value to scale the input by when copying to the output. The default 0.5 re-normalizes for a 2-sided PSD.

Definition at line 817 of file psdUtils.hpp.

Referenced by mx::AO::analysis::clAOLinearPredictor< _realT >::calcCoefficients(), mx::AO::analysis::fourierTemporalPSD< _realT, aosysT >::intensityPSD(), SCENARIO(), SCENARIO(), and mx::AO::analysis::speckleAmpPSD().

◆ augment1SidedPSDFreq()

template<typename T >
void mx::sigproc::augment1SidedPSDFreq ( std::vector< T > &  freqTwoSided,
std::vector< T > &  freqOneSided 
)

Augment a 1-sided frequency scale to standard FFT form.

Allocates freqTwoSided to hold a flipped copy of freqOneSided. If freqOneSided[0] is not 0, freqTwoSided[0] is set to 0, and the augmented frequency scale is shifted by 1.

Example:

{1,2,3,4,5} --> {0,1,2,3,4,5,-4,-3,-2,-1}

Test:
Verify scaling and normalization of augment1SidedPSD [test doc]
Parameters
[out]freqTwoSidedon return contains the FFT storage order copy of freqOneSided.
[in]freqOneSidedthe one-sided frequency scale to augment

Definition at line 876 of file psdUtils.hpp.

Referenced by mx::AO::analysis::fourierTemporalPSD< _realT, aosysT >::intensityPSD(), SCENARIO(), and SCENARIO().

◆ freq_sampling()

template<class realT >
realT mx::sigproc::freq_sampling ( size_t  dim,
realT  f_max 
)

Calculates the frequency sampling for a grid given maximum dimension and maximum frequency.

The freq_sampling is \( \Delta f = f_{max}/ (0.5*dim) \) where \( f_{max} = 1/(2\Delta t) \) is the maximum frequency and \( dim \) is the size of the grid.

Parameters
[in]dimis the size of the grid
[in]f_maxis the maximum frequency of the grid
Returns
the sampling interval \( \delta f \)
Template Parameters
realTis the real floating point type used for calculations.

Definition at line 196 of file psdUtils.hpp.

Referenced by mx::sigproc::frequency_grid1D(), and mx::sigproc::frequencyGrid().

◆ frequency_grid1D()

template<typename eigenArr >
void mx::sigproc::frequency_grid1D ( eigenArr &  vec,
typename eigenArr::Scalar  dt,
bool  inverse = false 
)

Create a 1-D frequency grid.

Parameters
[out]vecthe pre-allocated Eigen-type 1xN or Nx1 array, on return contains the frequency grid
[in]dtthe temporal sampling of the time series
[in]inverse[optional] if true
Template Parameters
eigenArrthe Eigen-like array type

Definition at line 211 of file psdUtils.hpp.

References mx::sigproc::freq_sampling().

◆ frequencyGrid() [1/4]

template<typename eigenArr , typename realParamT >
void mx::sigproc::frequencyGrid ( eigenArr &  arr,
realParamT  drT,
eigenArr *  k_x,
eigenArr *  k_y 
)

Create a 2-D frequency grid.

Definition at line 313 of file psdUtils.hpp.

References mx::sigproc::freq_sampling().

◆ frequencyGrid() [2/4]

template<typename eigenArr >
void mx::sigproc::frequencyGrid ( eigenArr &  arr,
typename eigenArr::Scalar  dt 
)

Create a frequency grid.

Definition at line 389 of file psdUtils.hpp.

References mx::sigproc::frequencyGrid().

◆ frequencyGrid() [3/4]

template<typename eigenArr >
void mx::sigproc::frequencyGrid ( eigenArr &  arr,
typename eigenArr::Scalar  dt,
eigenArr &  k_x,
eigenArr &  k_y 
)

Create a frequency grid.

Definition at line 396 of file psdUtils.hpp.

References mx::sigproc::frequencyGrid().

◆ frequencyGrid() [4/4]

template<typename realT , typename realParamT >
int mx::sigproc::frequencyGrid ( std::vector< realT > &  vec,
realParamT  dt,
bool  fftOrder = true 
)

Create a 1-D frequency grid.

Template Parameters
realTa real floating point type
realParamTa real floating point type, convenience to avoid double-float confusion.
Test:
Verify creation of a 1D frequency grid [test doc]
Parameters
[out]vecvec the pre-allocated vector, on return contains the frequency grid
[in]dtdt the temporal sampling of the time series
[in]fftOrderfftOrder [optional] if true the frequency grid is in FFT order

Definition at line 256 of file psdUtils.hpp.

Referenced by mx::sigproc::frequencyGrid(), mx::sigproc::frequencyGrid(), SCENARIO(), and SCENARIO().

◆ kneePSD()

template<typename floatT >
int mx::sigproc::kneePSD ( std::vector< floatT > &  psd,
std::vector< floatT > &  f,
floatT  beta,
floatT  fn,
floatT  alpha 
)

Generate a 1-D "knee" PSD.

Populates an Eigen array with

\[ P(f) = \frac{\beta}{ 1 + (f/f_n)^{\alpha}} \]

If you set \( T_0 \le 0 \) and \( t_0 = 0\) this reverts to a simple \( 1/f^\alpha \) law (i.e. it treats this as infinite outer scale and inner scale).

Template Parameters
floatTa floating point
Parameters
[out]psdthe PSD vector, will be resized.
[in]fthe frequency vector
[in]betathe scaling constant
[in]fnthe knee frequency
[in]alphathe exponent, by convention \( alpha > 0 \).

Definition at line 699 of file psdUtils.hpp.

◆ normPSD() [1/2]

template<typename floatT , typename floatParamT >
floatT mx::sigproc::normPSD ( Eigen::Array< floatT, Eigen::Dynamic, Eigen::Dynamic > &  psd,
Eigen::Array< floatT, Eigen::Dynamic, Eigen::Dynamic > &  k,
floatParamT  normT,
floatT  kmin = std::numeric_limits<floatT>::min(),
floatT  kmax = std::numeric_limits<floatT>::max() 
)

Normalize a 2-D PSD to have a given variance.

A frequency range can be specified for calculating the norm, otherwise the entire PSD is used. The entire PSD is normalized regardless.

Template Parameters
floatTthe floating point type of the PSD.
floatParamTa floating point type, convenience to avoid double-float cofusion.
Test:
Verify scaling and normalization of augment1SidedPSD [test doc]
Parameters
psd[in.out] the PSD to normalize, will be altered.
[in]kthe frequency grid for psd.
[in]normTthe desired total variance (or integral) of the PSD.
[in]kmin[optiona] the minimum frequency of the range over which to normalize.
[in]kmax[optiona] the maximum frequency of the range over which to normalize.

Definition at line 497 of file psdUtils.hpp.

◆ normPSD() [2/2]

template<typename floatT , typename floatParamT >
int mx::sigproc::normPSD ( std::vector< floatT > &  psd,
std::vector< floatT > &  f,
floatParamT  normT,
floatT  fmin = std::numeric_limits<floatT>::min(),
floatT  fmax = std::numeric_limits<floatT>::max() 
)

Normalize a 1-D PSD to have a given variance.

A frequency range can be specified to calculate the norm, otherwise f[0] to f[f.size()-1] is the range. The entire PSD is normalized regardless.

Template Parameters
floatTthe floating point type of the PSD.
floatParamTa floating point type, convenience to avoid double-float cofusion.
Test:
Verify scaling and normalization of augment1SidedPSD [test doc]
Parameters
psd[in.out] the PSD to normalize, will be altered.
[in]fthe frequency points for the PSD
[in]normTthe desired total variance (or integral) of the PSD.
[in]fmin[optiona] the minimum frequency of the range over which to normalize.
[in]fmax[optiona] the maximum frequency of the range over which to normalize.

Definition at line 447 of file psdUtils.hpp.

Referenced by mx::AO::analysis::fourierTemporalPSD< _realT, aosysT >::intensityPSD(), SCENARIO(), and SCENARIO().

◆ oneoverf_norm()

template<typename realT >
realT mx::sigproc::oneoverf_norm ( realT  fmin,
realT  fmax,
realT  alpha 
)

Calculate the normalization for a 1-D \( 1/|f|^\alpha \) PSD.

Parameters
[in]fminis the minimum non-zero absolute value of frequency
[in]fmaxis the maximum absolute value of frequencey
[in]alphais the power-law exponent, by convention \( \alpha > 0 \).
Returns
the normalization for a 2-sided power law PSD.
Template Parameters
realTis the real floating point type used for calculations.

Definition at line 412 of file psdUtils.hpp.

Referenced by mx::sigproc::oneoverf_psd(), and mx::sigproc::vonKarmanPSD().

◆ oneoverf_psd()

template<typename eigenArrp , typename eigenArrf >
void mx::sigproc::oneoverf_psd ( eigenArrp &  psd,
eigenArrf &  freq,
typename eigenArrp::Scalar  alpha,
typename eigenArrp::Scalar  beta = -1 
)

Generates a \( 1/|f|^\alpha \) power spectrum.

Populates an Eigen array with

\[ P(|f| = 0) = 0 \]

\[ P(|f| > 0) = \frac{\beta}{|f|^{\alpha}} \]

Parameters
[out]psdis the array to populate
[in]freqis a frequency grid, must be the same logical size as psd
[in]alphais the power law exponent, by convention \( alpha > 0 \).
[in]beta[optional is a normalization constant to multiply the raw spectrum by. If beta==-1 (default) then the PSD is normalized using oneoverf_norm.
Template Parameters
eigenArrpis the Eigen-like array type of the psd
eigenArrfis the Eigen-like array type of the frequency grid

Definition at line 580 of file psdUtils.hpp.

References mx::sigproc::oneoverf_norm().

◆ oneoverk_norm()

template<typename realT >
realT mx::sigproc::oneoverk_norm ( realT  kmin,
realT  kmax,
realT  alpha 
)

Calculate the normalization for a 2-D \( 1/|k|^\alpha \) PSD.

Parameters
[in]kminis the minimum non-zero absolute value of frequency
[in]kmaxis the maximum absolute value of frequencey
[in]alphais the power-law exponent, by convention \( \alpha > 0 \).
Returns
the normalization for a 2-D, 2-sided power law PSD.
Template Parameters
realTis the real floating point type used for calculations.

Definition at line 430 of file psdUtils.hpp.

◆ psdVar()

template<typename realT >
realT mx::sigproc::psdVar ( const std::vector< realT > &  f,
const std::vector< realT > &  PSD,
realT  half = 0.5 
)

Calculate the variance of a 1-D PSD.

By default uses trapezoid rule integration. This can be changed to mid-point integration.

If f.back() < 0, then a 2-sided PSD in FFT storage order is assumed. Otherwise, PSD is treated as 1-sided.

Returns
the variance of a PSD (the integral).
Template Parameters
realTthe real floating point type
Test:
Scenario: calculating variance from a 1D PSD. [test doc]
Parameters
[in]fthe frequency scale of the PSD.
[in]PSDthe PSD to integrate.
[in]half[optional] controls if trapezoid (0.5) or mid-point (1.0) integration is used. Do not use other values.

Definition at line 136 of file psdUtils.hpp.

References mx::sigproc::psdVar1sided(), and mx::sigproc::psdVar2sided().

Referenced by mx::AO::analysis::fourierTemporalPSD< _realT, aosysT >::analyzePSDGrid(), mx::AO::analysis::fourierTemporalPSD< _realT, aosysT >::intensityPSD(), mx::sigproc::rebin1SidedPSD(), SCENARIO(), SCENARIO(), and mx::AO::analysis::speckleAmpPSD().

◆ psdVar1sided()

template<typename realT >
realT mx::sigproc::psdVar1sided ( realT  df,
const realT *  PSD,
size_t  sz,
realT  half = 0.5 
)

Calculate the variance of a 1-D, 1-sided PSD.

By default uses trapezoid rule integration. This can be changed to mid-point integration.

Returns
the variance of a PSD (the integral).
Template Parameters
realTthe real floating point type
Test:
Scenario: calculating variance from a 1D PSD [test doc]
Parameters
[in]dfthe frequency scale of the PSD
[in]PSDthe PSD to integrate.
[in]szthe size of the PSD vector
[in]half[optional] controls if trapezoid (0.5) or mid-point (1.0) integration is used. Do not use other values.

Definition at line 66 of file psdUtils.hpp.

Referenced by mx::sigproc::averagePeriodogram< realT >::operator()(), and mx::sigproc::psdVar().

◆ psdVar2sided()

template<typename realT >
realT mx::sigproc::psdVar2sided ( realT  df,
const realT *  PSD,
size_t  sz,
realT  half = 0.5 
)

Calculate the variance of a 1-D, 2-sided PSD.

By default uses trapezoid rule integration. This can be changed to mid-point integration.

Assumes the 2-sided PSD is in standard FFT storage order, and that sz is even.

Returns
the variance of a PSD (the integral).
Template Parameters
realTthe real floating point type
Test:
Scenario: calculating variance from a 1D PSD. [test doc]
Parameters
[in]dfthe frequency scale of the PSD
[in]PSDthe PSD to integrate.
[in]szthe size of the PSD vector
[in]half[optional] controls if trapezoid (0.5) or mid-point (1.0) integration is used. Do not use other values.

Definition at line 99 of file psdUtils.hpp.

Referenced by mx::sigproc::psdVar().

◆ psdVarDisabled()

template<typename eigenArrT >
eigenArrT::Scalar mx::sigproc::psdVarDisabled ( eigenArrT &  freq,
eigenArrT &  PSD,
bool  trap = true 
)

Calculate the variance of a PSD.

By default uses trapezoid rule integration. This can be changed to mid-point integration.

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Returns
the variance of a PSD (the integral).
Template Parameters
realTthe real floating point type
Parameters
[in]freqthe frequency scale of the PSD
[in]PSDthe PSD to integrate.
[in]trap[optional] controls if trapezoid (true) or mid-point (false) integration is used.

Definition at line 158 of file psdUtils.hpp.

◆ rebin1SidedPSD()

template<typename realT >
int mx::sigproc::rebin1SidedPSD ( std::vector< realT > &  binFreq,
std::vector< realT > &  binPSD,
std::vector< realT > &  freq,
std::vector< realT > &  PSD,
realT  binSize,
bool  binAtZero = true 
)

Rebin a PSD, including its frequency scale, to a larger frequency bin size (fewer bins)

The rebinning uses trapezoid integration within bins to ensure minimum signal loss.

Maintains DFT sampling. That is, if initial frequency grid is 0,0.1,0.2... and the binSize is 1.0, the new grid will be 0,1,2 (as opposed to 0.5, 1.5, 2.5).

This introduces a question of what to do with first half-bin, which includes 0. It can be integrated (binAtZero = true, the default). This may cause inaccurate behavior if the value of the PSD when f=0 is important (e.g. when analyzing correlated noise), so setting binAtZero=false causes the f=0 value to be copied (using the nearest neighbor if no f=0 point is in the input.

The last half bin is always integrated.

The output is variance normalized to match the input variance.

Template Parameters
realTthe real floating point type
Parameters
[out]binFreqthe binned frequency scale, resized.
[out]binPSDthe binned PSD, resized.
[in]freqthe frequency scale of the PSD to bin.
[in]PSDthe PSD to bin.
[in]binSizein same units as freq
[in]binAtZero[optional] controls whether the zero point is binned or copied.

Definition at line 933 of file psdUtils.hpp.

References mx::sigproc::psdVar().

◆ vonKarmanPSD() [1/2]

template<typename eigenArrp , typename eigenArrf , typename alphaT , typename L0T , typename l0T , typename betaT >
void mx::sigproc::vonKarmanPSD ( eigenArrp &  psd,
eigenArrf &  freq,
alphaT  alpha,
L0T  L0 = 0,
l0T  l0 = 0,
betaT  beta = -1 
)

Generates a von Karman power spectrum.

Populates an Eigen array with

\[ P(k) = \frac{\beta}{ (k^2 + (1/L_0)^2)^{\alpha/2}} e^{ - k^2 l_0^2} \]

If you set \( L_0 \le 0 \) and \( l_0 = 0\) this reverts to a simple \( 1/f^\alpha \) law (i.e. it treats this as infinite outer scale and inner scale).

Parameters
[out]psdis the array to populate, allocated.
[in]freqis a frequency grid, must be the same logical size as psd
[in]alphais the power law exponent, by convention \( alpha > 0 \).
[in]L0[optional] is the outer scale.
[in]l0[optional] is the inner scale.
[in]beta[optional] is a normalization constant to multiply the raw spectrum by. If beta==-1 (default) then the PSD is normalized using oneoverf_norm.
Template Parameters
eigenArrpis the Eigen array type of the psd
eigenArrfis the Eigen array type of the frequency grid

Definition at line 741 of file psdUtils.hpp.

References mx::sigproc::oneoverf_norm().

◆ vonKarmanPSD() [2/2]

template<typename floatT , typename floatfT , typename alphaT , typename T0T = double, typename t0T = double, typename betaT = double>
int mx::sigproc::vonKarmanPSD ( std::vector< floatT > &  psd,
std::vector< floatfT > &  f,
alphaT  alpha,
T0T  T0 = 0,
t0T  t0 = 0,
betaT  beta = 1 
)

Generate a 1-D von Karman power spectrum.

Populates an Eigen array with

\[ P(f) = \frac{\beta}{ (f^2 + (1/T_0)^2)^{\alpha/2}} e^{ - f^2 t_0^2} \]

If you set \( T_0 \le 0 \) and \( t_0 = 0\) this reverts to a simple \( 1/f^\alpha \) law (i.e. it treats this as infinite outer scale and inner scale).

Template Parameters
floatTa floating point
Parameters
[out]psdthe PSD vector, will be resized.
[in]fthe frequency vector
[in]alphathe exponent, by convention \( alpha > 0 \).
[in]T0the outer scale, default is 0 (not used).
[in]t0the inner scale, default is 0 (not used).
[in]betathe scaling constant, default is 1

Definition at line 643 of file psdUtils.hpp.