mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
radprofIntegral.hpp
Go to the documentation of this file.
1/** \file radprofIntegral.hpp
2 * \author Jared R. Males (jaredmales@gmail.com)
3 * \brief 2D integration of a radial profile
4 * \ingroup gen_math_files
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2022 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26#ifndef radprofIntegral_hpp
27#define radprofIntegral_hpp
28
29#include <cmath>
30#include <vector>
31#include <type_traits>
32
33#include "../mxException.hpp"
34
35#include "constants.hpp"
36
37namespace mx
38{
39namespace math
40{
41
42/// Calculate the 2D integral given a radial profile.
43/** Calculates the integral
44 * \f[
45 2\pi \int_{min}^{max} p(r) r dr
46 \f]
47 * using the <a href="https://en.wikipedia.org/wiki/Trapezoidal_rule">Trapezoid rule</a>.
48 *
49 * The limits of integration are normally `r[0]` to `r.back()` inclusive. If the parameter \p inczero
50 * is set to true, then the region from `0` to `r[0]` is included, using the value of `p[0]`, where the
51 * the integral is there estimate as \f$ p[0] \pi r[0]^2 \f$.
52 *
53 * \todo the trapezoid rule may not be strictly valid as implemented. Is there a weighting to apply based on r?
54 *
55 * \returns the value of the integral
56 *
57 * \throws mxException if the sizes of the input vectors don't match.
58 *
59 * \ingroup integration
60 */
61template <typename vectorScT, typename vectorT>
62typename vectorT::value_type radprofIntegral( vectorScT r, /// [in] the r
63 vectorT p,
64 bool inczero = false )
65{
66 typedef typename vectorT::value_type floatT;
67
68 static_assert( std::is_floating_point<typename std::remove_cv<floatT>::type>::value,
69 "radprofIntegral: function must be floating point" );
70
71 if( r.size() != p.size() )
72 {
73 mxThrowException( err::sizeerr, "radprofIntegral", "vectors must have same size" );
74 }
75
76 if( r.size() < 2 )
77 {
78 mxThrowException( err::sizeerr, "radprofIntegral", "must be at least 2 elements in radial profile" );
79 }
80
81 floatT s = 0;
82
83 if( inczero )
84 s = p[0] * pow( r[0], 2 );
85
86 size_t n = 0;
87 s += 0.5 * p[n] * ( pow( r[n + 1], 2 ) - pow( r[n], 2 ) ); // r[0] * ( r[1] - r[0] );
88
89 for( n = 1; n < r.size() - 1; ++n )
90 {
91 s += p[n] * ( pow( r[n], 2 ) - pow( r[n - 1], 2 ) ); // r[n] * ( r[n] - r[n-1]);
92 }
93
94 s += 0.5 * p[n] * ( pow( r[n], 2 ) - pow( r[n - 1], 2 ) );
95
96 // size_t n = r.size()-1;
97 // s += 2*p[n]*r[n] * ( r[n] - r[n-1] );
98
99 return s * pi<floatT>();
100}
101
102} // namespace math
103} // namespace mx
104
105#endif // radprofIntegral_hpp
mxException for a size error
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
vectorT::value_type radprofIntegral(vectorScT r, vectorT p, bool inczero=false)
Calculate the 2D integral given a radial profile.
The mxlib c++ namespace.
Definition mxError.hpp:106