mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
randomT.hpp
Go to the documentation of this file.
1/** \file randomT.hpp
2 * \author Jared R. Males
3 * \brief Defines a random number type
4 * \ingroup gen_math_files
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2015, 2016, 2017, 2020 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef mx_math_randomT_hpp
28#define mx_math_randomT_hpp
29
30#include <random>
31
32#include "randomSeed.hpp"
33
34namespace mx
35{
36namespace math
37{
38
39/// A random number type, which functions like any other arithmetic type.
40/**
41 * Combines a random engine, and a random distribution. Using the type conversion operator
42 * randomT returns the next random deviate whenever it is referenced.
43 *
44 * Example:
45 *
46 \code
47 //This can also be done using the alias definition mx::math::normDistT.
48 randomT<double, std::mt19937_64, std::normal_distribution<double> > norm_distd;
49 norm_distd.seed(); //
50
51 double d1 = norm_distd; //get a normally distributed value
52 double d2 = norm_distd; //get the next normally distributed value
53 \endcode
54 *
55 * \test Verify compilation and basic operation of randomT with std::distributions \ref tests_math_randomT_basic "[test
56 doc]"
57 * \test Verify compilation and basic operation of randomT with the Laplace distribution \ref
58 tests_math_randomT_basic_laplace "[test doc]"
59 *
60 * \ingroup random
61 */
62template <class typeT, class _ranengT, class _randistT>
64{
65
66 public:
67 /// Typedef for the distribution type
69
70 /// Typedef for the engine type
72
73 /// Constructor
74 /** By default this calls the seed method, which will use /dev/random to seed the generator on linux, and time(0) on
75 * other systems. Set to false to suppress seeding, and/or set a seed with seed(x).
76 */
77 randomT( bool doSeed = true /**< [in] [optional] if true then the seed method is called upon construction.*/ )
78 {
79 if( doSeed )
80 {
81 seed();
82 }
83 }
84
85 /// The random distribution
87
88 /// The random engine
90
91 /// The conversion operator, returns the next value in the sequence, according to the distribution.
92 operator typeT()
93 {
94 return distribution( engine );
95 }
96
97 /// Set the seed of the random engine.
98 /** Calls the engines seed member function.
99 *
100 */
101 void seed( typename ranengT::result_type seedval /**< [in] the argument to pass to ranengT::seed() */ )
102 {
103 engine.seed( seedval );
104 }
105
106 /// Seed the random engine with a good value
107 /** Calls \ref mx::randomSeed to get the value. On linux this uses /dev/urandom. On other sytems, this uses
108 * time(0).
109 */
110 void seed()
111 {
112 typename ranengT::result_type seedval;
114 seed( seedval );
115 }
116};
117
118/**
119 * @brief The Laplace (double exponential) continuous distribution for random numbers.
120 *
121 * The formula for the exponential probability density function is
122 * @f$p(x|\lambda) = \frac{\lambda}{2} e^{-\lambda x}@f$.
123 *
124 * <table border=1 cellpadding=10 cellspacing=0>
125 * <caption align=top>Distribution Statistics</caption>
126 * <tr><td>Mean</td><td>@f$0@f$</td></tr>
127 * <tr><td>Median</td><td>@f$0@f$</td></tr>
128 * <tr><td>Mode</td><td>@f$0@f$</td></tr>
129 * <tr><td>Range</td><td>@f$[-\infty, \infty]@f$</td></tr>
130 * <tr><td>Standard Deviation</td><td>@f$\frac{\sqrt{2}}{\lambda}@f$</td></tr>
131 * </table>
132 *
133 * This is based on the implementation of the exponential distribution in the GNU ISO C++ Library version 4.6.
134 *
135 * \test Verify compilation and basic operation of randomT with the Laplace distribution \ref
136 * tests_math_randomT_basic_laplace "[test doc]"
137 *
138 * \ingroup random
139 */
140template <typename _RealType = double>
142{
143 static_assert( std::is_floating_point<_RealType>::value, "template argument not a floating point type" );
144
145 public:
146 /** The type of the range of the distribution. */
148
149 /** Parameter type. */
151 {
153
154 explicit param_type( _RealType __lambda = _RealType( 1 ) ) : _M_lambda( __lambda )
155 {
156 }
157
158 _RealType lambda() const
159 {
160 return _M_lambda;
161 }
162
163 friend bool operator==( const param_type &__p1, const param_type &__p2 )
164 {
165 return __p1._M_lambda == __p2._M_lambda;
166 }
167
168 private:
169 _RealType _M_lambda;
170 };
171
172 public:
173 /**
174 * @brief Constructs a Laplace (double exponential) distribution with inverse scale
175 * parameter @f$\lambda@f$.
176 */
177 explicit laplace_distribution( const result_type &__lambda = result_type( 1 ) ) : _M_param( __lambda )
178 {
179 }
180
181 explicit laplace_distribution( const param_type &__p ) : _M_param( __p )
182 {
183 }
184
185 /**
186 * @brief Resets the distribution state.
187 *
188 * Has no effect on Laplace distributions.
189 */
190 void reset()
191 {
192 }
193
194 /**
195 * @brief Returns the inverse scale parameter of the distribution.
196 */
198 {
199 return _M_param.lambda();
200 }
201
202 /**
203 * @brief Returns the parameter set of the distribution.
204 */
206 {
207 return _M_param;
208 }
209
210 /**
211 * @brief Sets the parameter set of the distribution.
212 * @param __param The new parameter set of the distribution.
213 */
214 void param( const param_type &__param )
215 {
216 _M_param = __param;
217 }
218
219 /**
220 * @brief Returns the greatest lower bound value of the distribution.
221 */
223 {
224 return std::numeric_limits<result_type>::min();
225 }
226
227 /**
228 * @brief Returns the least upper bound value of the distribution.
229 */
231 {
232 return std::numeric_limits<result_type>::max();
233 }
234
235 /**
236 * @brief Generating functions.
237 */
238 template <typename _UniformRandomNumberGenerator>
240 {
241 return this->operator()( __urng, this->param() );
242 }
243
244 template <typename _UniformRandomNumberGenerator>
245 result_type operator()( _UniformRandomNumberGenerator &__urng, const param_type &__p )
246 {
247 int sgnx = 1;
248
249 result_type __aurng = 0.5 - std::generate_canonical<result_type,
250 std::numeric_limits<result_type>::digits,
252
253 if( __aurng < 0 )
254 {
255 sgnx = -1;
256 __aurng *= -1;
257 }
258
259 return 0. - __p.lambda() * sgnx * std::log( 1. - 2. * __aurng );
260 }
261
262 private:
263 param_type _M_param;
264};
265
266/**
267 * @brief Return true if two exponential distributions have the same
268 * parameters.
269 */
270template <typename _RealType>
272{
273 return __d1.param() == __d2.param();
274}
275
276/**
277 * @brief Return true if two exponential distributions have different
278 * parameters.
279 */
280template <typename _RealType>
285
286/**
287 * @brief Inserts a %laplace_distribution random number distribution
288 * @p __x into the output stream @p __os.
289 *
290 * @param __os An output stream.
291 * @param __x A %laplace_distribution random number distribution.
292 *
293 * @returns The output stream with the state of @p __x inserted or in
294 * an error state.
295 */
296template <typename _RealType, typename _CharT, typename _Traits>
297std::basic_ostream<_CharT, _Traits> &operator<<( std::basic_ostream<_CharT, _Traits> &,
299
300/**
301 * @brief Extracts a %laplace_distribution random number distribution
302 * @p __x from the input stream @p __is.
303 *
304 * @param __is An input stream.
305 * @param __x A %laplace_distribution random number
306 * generator engine.
307 *
308 * @returns The input stream with @p __x extracted or in an error state.
309 */
310template <typename _RealType, typename _CharT, typename _Traits>
311std::basic_istream<_CharT, _Traits> &operator>>( std::basic_istream<_CharT, _Traits> &,
313
314/** \ingroup random
315 * @{
316 */
317
318/// Alias for a uniform random variate
319template <typename realT>
321
322/// Alias for a standard normal random variate
323template <typename realT>
325
326/// Alias for an exponential random variate
327template <typename realT>
329
330/// Alias for a laplace random variate
331template <typename realT>
333
334/// Alias for a poisson random variate
335template <typename intT>
337
338/// Alias for a log normal variate
339template <typename realT>
341
342/// @}
343
344} // namespace math
345} // namespace mx
346
347#endif // mx_math_randomT_hpp
348
349/*5/22/06: added 64 bit mersenne twister support
350 */
The Laplace (double exponential) continuous distribution for random numbers.
Definition randomT.hpp:142
_RealType lambda() const
Returns the inverse scale parameter of the distribution.
Definition randomT.hpp:197
void param(const param_type &__param)
Sets the parameter set of the distribution.
Definition randomT.hpp:214
laplace_distribution(const result_type &__lambda=result_type(1))
Constructs a Laplace (double exponential) distribution with inverse scale parameter .
Definition randomT.hpp:177
void reset()
Resets the distribution state.
Definition randomT.hpp:190
result_type min() const
Returns the greatest lower bound value of the distribution.
Definition randomT.hpp:222
param_type param() const
Returns the parameter set of the distribution.
Definition randomT.hpp:205
result_type max() const
Returns the least upper bound value of the distribution.
Definition randomT.hpp:230
result_type operator()(_UniformRandomNumberGenerator &__urng)
Generating functions.
Definition randomT.hpp:239
A random number type, which functions like any other arithmetic type.
Definition randomT.hpp:64
_randistT distribution
The random distribution.
Definition randomT.hpp:86
randomT(bool doSeed=true)
Constructor.
Definition randomT.hpp:77
void seed(typename ranengT::result_type seedval)
Set the seed of the random engine.
Definition randomT.hpp:101
_ranengT ranengT
Typedef for the engine type.
Definition randomT.hpp:71
ranengT engine
The random engine.
Definition randomT.hpp:89
_randistT randistT
Typedef for the distribution type.
Definition randomT.hpp:68
void seed()
Seed the random engine with a good value.
Definition randomT.hpp:110
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
int randomSeed(intT &seedval)
Get a value to use as a random seed.
The mxlib c++ namespace.
Definition mxError.hpp:106
Defines a random number seed generator.
bool operator!=(const laplace_distribution< _RealType > &__d1, const laplace_distribution< _RealType > &__d2)
Return true if two exponential distributions have different parameters.
Definition randomT.hpp:281
std::basic_istream< _CharT, _Traits > & operator>>(std::basic_istream< _CharT, _Traits > &, laplace_distribution< _RealType > &)
Extracts a laplace_distribution random number distribution __x from the input stream __is.
bool operator==(const laplace_distribution< _RealType > &__d1, const laplace_distribution< _RealType > &__d2)
Return true if two exponential distributions have the same parameters.
Definition randomT.hpp:271