mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
sourceFinder.hpp
Go to the documentation of this file.
1/** \file sourceFinder.hpp
2 * \brief Declares and defines a class for finding sources in images
3 * \ingroup image_processing_files
4 * \author Jared R. Males (jaredmales@gmail.com)
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2021 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef improc_sourceFinder_hpp
28#define improc_sourceFinder_hpp
29
30#include "eigenImage.hpp"
31
32#include "../math/vectorUtils.hpp"
33
34namespace mx
35{
36namespace improc
37{
38
39/// Find stars in an image by SNR thresholding
40/**
41 * \ingroup image_utils
42 */
43template <typename _realT>
45{
46
47 public:
48 typedef _realT realT; ///< The real valued type in which to do calculations
49
50 typedef std::pair<int, int> pixelT; ///< Pixel coordinates
51
52 protected:
53 realT m_threshold{ 5 }; ///< The SNR threshold to use
54
55 realT m_minsep{ 2 }; ///< The minimum separation between stars. Closer SNR detections are treated as the same star.
56
58 true }; ///< If true, then the median is used for standard deviation calculation. The mean is used otherwise.
59
60 // Working memory, retained to help with repeated calls.
61 std::vector<float> m_vals;
62 std::vector<pixelT> m_pixs;
63 std::vector<size_t> m_snr;
64
65 public:
66 /// Default c'tor
68
69 /// Constructor to set up the algorithm
70 sourceFinder( realT thresh, ///< [in]
71 realT minsep ///< [in]
72 );
73
74 /// Clear the working memory
75 void clear();
76
77 /// Set the SNR threshold
78 void treshold( const realT &thresh /**< [in] the new threshold*/ );
79
80 /// Get the SNR threshold
81 /** \returns the current value of m_threshold;
82 */
83 realT threshold();
84
85 /// Set the minimum separation
86 void minsep( const realT &msep /**< [in] the new minimum separation*/ );
87
88 /// Get the minimum separation between stars
89 /** \returns the current value of m_minsep;
90 */
91 realT minsep();
92
93 /// Set the useMedian flag
94 void useMedian( const bool &useMed /**< [in] the new useMedian flag value*/ );
95
96 /// Get the useMedian flag
97 /** \returns the current value of m_useMedian;
98 */
99 bool useMedian();
100
101 /// Find stars in an image
102 /** Returns the coordinates as (row, col) of the highest SNR pixel in each unique star.
103 *
104 * \returns a vector of pixel coordinates
105 */
106 std::vector<pixelT> operator()( const eigenImage<realT> &im /**< [in] the image to search for stars*/ );
107};
108
109template <typename realT>
113
114template <typename realT>
115sourceFinder<realT>::sourceFinder( realT thresh, realT minsep ) : m_threshold( thresh ), m_minsep( minsep )
116{
117}
118
119template <typename realT>
121{
122 m_threshold = thresh;
123}
124
125template <typename realT>
127{
128 m_vals.clear();
129 m_pixs.clear();
130 m_snr.clear();
131}
132
133template <typename realT>
135{
136 return m_threshold;
137}
138
139template <typename realT>
141{
142 m_minsep = msep;
143}
144
145template <typename realT>
147{
148 return m_minsep;
149}
150
151template <typename realT>
152void sourceFinder<realT>::useMedian( const bool &useMed )
153{
154 m_useMedian = useMed;
155}
156
157template <typename realT>
159{
160 return m_useMedian;
161}
162
163template <typename realT>
164std::vector<typename sourceFinder<realT>::pixelT> sourceFinder<realT>::operator()( const eigenImage<realT> &im )
165{
166 m_vals.resize( im.rows() * im.cols() );
167 m_pixs.resize( im.rows() * im.cols() );
168
169 int p = 0;
170 for( int cc = 0; cc < im.cols(); ++cc )
171 {
172 for( int rr = 0; rr < im.rows(); ++rr )
173 {
174 m_vals[p] = im( rr, cc );
175 m_pixs[p] = { rr, cc };
176 ++p;
177 }
178 }
179
180 realT mm;
181
182 if( m_useMedian )
183 mm = math::vectorMedian( m_vals );
184 else
185 mm = math::vectorMean( m_vals );
186 realT std = sqrt( math::vectorVariance( m_vals, mm ) );
187
188 // Get the SNR for any pixels above the threshold
189 m_snr.clear();
190 for( size_t n = 0; n < m_vals.size(); ++n )
191 {
192 if( ( m_vals[n] - mm ) / std >= m_threshold )
193 {
194 m_snr.push_back( n );
195 }
196 }
197
198 // Delete the pixels above threshold which are with minsep of a higher pixel
199 realT mms2 = m_minsep * m_minsep; // save an op
200 for( long n = 0; n < m_snr.size(); ++n )
201 {
202 for( long m = 0; m < m_snr.size(); ++m )
203 {
204 if( m == n )
205 continue;
206
207 // Squared distance:
208 realT d2 = pow( m_pixs[m_snr[n]].first - m_pixs[m_snr[m]].first, 2 ) +
209 pow( m_pixs[m_snr[n]].second - m_pixs[m_snr[m]].second, 2 );
210
211 if( d2 < mms2 )
212 {
213 if( m_vals[m_snr[n]] < m_vals[m_snr[m]] ) // If this is the higher pixel, delete the lower
214 {
215 m_snr.erase( m_snr.begin() + n );
216 --n;
217 break; // So we're done comparing to the one we just deleted.
218 }
219 else // This is lower, so delete it.
220 {
221 m_snr.erase( m_snr.begin() + m );
222 if( m < n )
223 --n; // changing size behind
224 --m;
225 continue;
226 }
227 }
228 }
229 }
230
231 std::vector<pixelT> found( m_snr.size() );
232
233 for( size_t n = 0; n < m_snr.size(); ++n )
234 {
235 found[n] = m_pixs[m_snr[n]];
236 }
237
238 return found;
239}
240
241} // namespace improc
242} // namespace mx
243
244#endif // improc_sourceFinder_hpp
Find stars in an image by SNR thresholding.
std::pair< int, int > pixelT
Pixel coordinates.
realT minsep()
Get the minimum separation between stars.
realT m_threshold
The SNR threshold to use.
realT m_minsep
The minimum separation between stars. Closer SNR detections are treated as the same star.
bool useMedian()
Get the useMedian flag.
sourceFinder()
Default c'tor.
bool m_useMedian
If true, then the median is used for standard deviation calculation. The mean is used otherwise.
std::vector< pixelT > operator()(const eigenImage< realT > &im)
Find stars in an image.
void treshold(const realT &thresh)
Set the SNR threshold.
_realT realT
The real valued type in which to do calculations.
realT threshold()
Get the SNR threshold.
void clear()
Clear the working memory.
Tools for using the eigen library for image processing.
Eigen::Array< scalarT, -1, -1 > eigenImage
Definition of the eigenImage type, which is an alias for Eigen::Array.
valueT vectorMean(const valueT *vec, size_t sz)
Calculate the mean of a vector.
valueT vectorVariance(const valueT *vec, size_t sz, valueT mean)
Calculate the variance of a vector relative to a supplied mean value.
vectorT::value_type vectorMedian(const vectorT &vec, vectorT *work=0)
Calculate median of a vector, leaving the vector unaltered.
The mxlib c++ namespace.
Definition mxError.hpp:106