mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
weibull.hpp
Go to the documentation of this file.
1/** \file weibull.hpp
2 * \brief The Weibull distribution.
3 * \ingroup gen_math_files
4 * \author Jared R. Males (jaredmales@gmail.com)
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2015, 2016, 2017 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef weibull_hpp
28#define weibull_hpp
29
30namespace mx
31{
32namespace math
33{
34namespace func
35{
36
37/// The MLE of the Weibull distribution lambda parameter.
38/**
39 * \tparam realT a real floating point type
40 *
41 * \returns the MLE of lambda given the data.
42 *
43 * \ingroup gen_math_weibull
44 */
45template <typename realT>
46realT weibull_lambda( std::vector<realT> &x, ///<[in] the data points
47 realT k, ///< [in] the shape parameter
48 realT x0 = 0 ///< [in] [optional] the location parameter
49)
50{
51 int n = x.size();
52
53 realT lambda = 0;
54
55 for( int i = 0; i < n; ++i )
56 lambda += pow( x[i] - x0, k );
57
58 lambda /= n;
59
60 return pow( lambda, 1.0 / k );
61}
62
63/// The general shifted Weibull distribution at a point.
64/** Calculates the value of the Weibull distribution at a location specified by x.
65 *
66 * \f[
67 *
68 * f(x; x_o, \lambda, k) =
69 * \begin{cases}
70 * \frac{k}{\lambda}\left( \frac{x-x_o}{\lambda}\right)^{k-1} \exp \left( -\left(\frac{x-x_o}{\lambda}\right)^k \right),
71 * & x \ge 0 \\ 0, & x < 0 \end{cases} \f]
72 *
73 * \tparam realT a real floating point type
74 *
75 * \returns the value of the Weibull distribution at x.
76 *
77 * \ingroup gen_math_weibull
78 */
79template <typename realT>
80realT weibull( realT x, ///< [in] the location at which to calculate the distribution
81 realT x0, ///< [in] the location parameter
82 realT k, ///< [in] the shape parameter
83 realT lambda ///< [in] the scale parameter
84)
85{
86 if( x - x0 < 0 )
87 return 0.0;
88
89 realT rat = ( x - x0 ) / lambda;
90
91 return ( k / lambda ) * pow( rat, k - 1 ) * exp( -pow( rat, k ) );
92}
93
94/// The Weibull distribution at a point.
95/** Calculates the value of the Weibull distribution at a location specified by x.
96 *
97 * \f[
98 *
99 * f(x; \lambda, k) =
100 * \begin{cases}
101 * \frac{k}{\lambda}\left( \frac{x}{\lambda}\right)^{k-1} \exp \left( -\left(\frac{x}{\lambda}\right)^k \right), & x \ge
102 * 0 \\ 0, & x < 0 \end{cases} \f]
103 *
104 * \tparam realT a real floating point type
105 *
106 * \returns the value of the Weibull distribution at x.
107 *
108 * \overload
109 *
110 * \ingroup gen_math_weibull
111 */
112template <typename realT>
113realT weibull( realT x, ///< [in] the location at which to calculate the distribution
114 realT k, ///< [in] the shape parameter
115 realT lambda ///< [in] the scale parameter
116)
117{
118 return weibull( x, static_cast<realT>( 0 ), k, lambda );
119}
120
121} // namespace func
122} // namespace math
123} // namespace mx
124
125#endif // weibull_hpp
realT weibull_lambda(std::vector< realT > &x, realT k, realT x0=0)
The MLE of the Weibull distribution lambda parameter.
Definition weibull.hpp:46
realT weibull(realT x, realT x0, realT k, realT lambda)
The general shifted Weibull distribution at a point.
Definition weibull.hpp:80
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
The mxlib c++ namespace.
Definition mxError.hpp:106