mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
|
Declares and defines templatized wrappers for the Lapack library. More...
Declares and defines templatized wrappers for the Lapack library.
Definition in file templateLapack.hpp.
Go to the source code of this file.
Namespaces | |
mx | |
The mxlib c++ namespace. | |
Functions | |
template<typename dataT > | |
dataT | mx::math::lamch (char CMACH) |
Determine machine parameters. More... | |
template<typename dataT > | |
MXLAPACK_INT | mx::math::potrf (char UPLO, MXLAPACK_INT N, dataT *A, MXLAPACK_INT LDA, MXLAPACK_INT &INFO) |
Compute the Cholesky factorization of a real symmetric positive definite matrix A. More... | |
template<typename dataT > | |
MXLAPACK_INT | mx::math::sytrd (char UPLO, MXLAPACK_INT N, dataT *A, MXLAPACK_INT LDA, dataT *D, dataT *E, dataT *TAU, dataT *WORK, MXLAPACK_INT LWORK, MXLAPACK_INT INFO) |
Reduce a real symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity transformation. More... | |
template<typename dataT > | |
MXLAPACK_INT | mx::math::syevr (char JOBZ, char RANGE, char UPLO, MXLAPACK_INT N, dataT *A, MXLAPACK_INT LDA, dataT VL, dataT VU, MXLAPACK_INT IL, MXLAPACK_INT IU, dataT ABSTOL, MXLAPACK_INT *M, dataT *W, dataT *Z, MXLAPACK_INT LDZ, MXLAPACK_INT *ISUPPZ, dataT *WORK, MXLAPACK_INT LWORK, MXLAPACK_INT *IWORK, MXLAPACK_INT LIWORK) |
Compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix. More... | |
template<typename dataT > | |
MXLAPACK_INT | mx::math::gesvd (char JOBU, char JOBVT, MXLAPACK_INT M, MXLAPACK_INT N, dataT *A, MXLAPACK_INT LDA, dataT *S, dataT *U, MXLAPACK_INT LDU, dataT *VT, MXLAPACK_INT LDVT, dataT *WORK, MXLAPACK_INT LWORK) |
Compute the singular value decomposition (SVD) of a real matrix. More... | |
MXLAPACK_INT mx::math::potrf | ( | char | UPLO, |
MXLAPACK_INT | N, | ||
dataT * | A, | ||
MXLAPACK_INT | LDA, | ||
MXLAPACK_INT & | INFO | ||
) |
Compute the Cholesky factorization of a real symmetric positive definite matrix A.
The factorization has the form A = U**T * U, if UPLO = 'U', or A = L * L**T, if UPLO = 'L', where U is an upper triangular matrix and L is lower triangular.
[in] | UPLO | 'U' if upper triangle of A is stored, 'L' if lower triangle of A is stored. |
[in] | N | The order of the matrix A, >= 0. |
A | [in.out] Symmetric matrix of dimension (LDA,N), stored as specified in UPLO. Note that the opposite half is not referenced. | |
[in] | LDA | The leading dimension of A. |
[out] | INFO | 0 on success, < 0 -INFO means the i-th argument had an illegal value, >0 the leading minor of order INFO is not positive definite, and the factorization could not be completed. |
References mx::math::potrf().
Referenced by mx::math::potrf().