mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
|
Functions involving Bessel Functions.
Functions | |
template<typename T1 , typename T2 > | |
T2 | mx::math::func::bessel_j (T1 v, T2 x) |
Bessel Functions of the First Kind. More... | |
template<typename T > | |
T | mx::math::func::jinc (const T &x) |
The Jinc function. More... | |
template<typename T1 , typename T2 > | |
T2 | mx::math::func::jincN (const T1 &v, const T2 &x) |
The JincN function. More... | |
T2 mx::math::func::bessel_j | ( | T1 | v, |
T2 | x | ||
) |
Bessel Functions of the First Kind.
This is a wrapper for boost.
[in] | v | |
[in] | x |
Definition at line 49 of file bessel.hpp.
Referenced by mx::sigproc::zernikeQNorm().
T mx::math::func::jinc | ( | const T & | x | ) |
The Jinc function.
The Jinc function is defined here as
\[ Ji(x) = \frac{J_1(x)}{x} \]
where \( J_1 \) is the cylindrical bessel function of the first kind of order 1.
Follows the technique in boost sinc_pi, using the Taylor series for small arguments. If x is smaller than \( \epsilon \), then it returns 1/2. If x is larger than \( \epsilon \) but smaller than \( \sqrt{\epsilon} \), then this function returns
\[ Ji(x) \approx \frac{1}{2} - \frac{x^2}{16}. \]
T | is an floating point type |
[in] | x | the argument |
Definition at line 64 of file jinc.hpp.
Referenced by mx::math::func::airyPattern(), mx::AO::analysis::F_basic(), mx::AO::analysis::F_mod(), mx::AO::analysis::Fm_projMod(), mx::AO::analysis::jincFuncs(), mx::math::func::jincN(), mx::AO::analysis::vonKarmanSpectrum< realT >::operator()(), mx::AO::analysis::phiInt_basic(), mx::AO::analysis::phiInt_mod(), and mx::sigproc::zernikePPiston().
T2 mx::math::func::jincN | ( | const T1 & | v, |
const T2 & | x | ||
) |
The JincN function.
The JincN function is defined here as
\[ Ji_N(x) = \frac{J_N(x)}{x} \]
where \( J_N \) is the cylindrical bessel function of the first kind of order N, \( N \ge 1 \).
If \( N == 1 \) this returns jinc(x).
Otherwise, if x is smaller than \( \sqrt{\epsilon} \), returns 0.
[in] | v | the Bessel function order |
[in] | x | the argument |
Definition at line 120 of file jinc.hpp.
References mx::math::func::jinc().
Referenced by mx::AO::analysis::vonKarmanSpectrum< realT >::operator()(), mx::sigproc::zernikePAstig(), mx::sigproc::zernikePComa(), mx::sigproc::zernikePDefocus(), mx::sigproc::zernikePTipTilt(), and mx::sigproc::zernikePTrefoil().