mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
jinc.hpp
Go to the documentation of this file.
1/** \file jinc.hpp
2 * \brief Declares and defines the Jinc and Jinc2 functions
3 * \ingroup gen_math_files
4 * \author Jared R. Males (jaredmales@gmail.com)
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2015, 2016, 2017 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef math_func_jinc_hpp
28#define math_func_jinc_hpp
29
30#include <limits>
31#include <cmath>
32
33#include "bessel.hpp"
34#include "precision.hpp"
35
36namespace mx
37{
38namespace math
39{
40namespace func
41{
42
43/// The Jinc function
44/** The Jinc function is defined here as
45 * \f[
46 * Ji(x) = \frac{J_1(x)}{x}
47 * \f]
48 * where \f$ J_1 \f$ is the cylindrical bessel function of the first kind of order 1.
49 *
50 * Follows the technique in boost sinc_pi, using the Taylor series for small arguments. If x
51 * is smaller than \f$ \epsilon \f$, then it returns 1/2. If x is larger than \f$ \epsilon \f$ but smaller than \f$
52 * \sqrt{\epsilon} \f$, then this function returns \f[ Ji(x) \approx \frac{1}{2} - \frac{x^2}{16}. \f]
53 *
54 * \returns the value of Ji(x)
55 *
56 * \tparam T is an floating point type
57 *
58 * \ingroup gen_math_bessel
59 */
60template <typename T>
61T jinc( const T &x /**< [in] the argument */ )
62{
63 T const taylor_0_bound = std::numeric_limits<T>::epsilon();
65
66 if( std::fabs( x ) > taylor_2_bound )
67 {
68 return bessel_j<int, T>( 1, x ) / ( x );
69 }
70 else
71 {
72 // approximation by taylor series in x at 0
73 T result = static_cast<T>( 0.5 );
74 if( std::fabs( x ) >= taylor_0_bound )
75 {
76 T x2 = x * x;
77
78 // approximation by taylor series in x at 0 up to order 2
79 result -= x2 / static_cast<T>( 16 );
80 }
81
82 return result;
83 }
84}
85
86extern template float jinc<float>( const float &x );
87
88extern template double jinc<double>( const double &x );
89
90extern template long double jinc<long double>( const long double &x );
91
92#ifdef HASQUAD
93extern template __float128 jinc<__float128>( const __float128 &x );
94#endif
95
96/// The JincN function
97/** The JincN function is defined here as
98 * \f[
99 * Ji_N(x) = \frac{J_N(x)}{x}
100 * \f]
101 * where \f$ J_N \f$ is the cylindrical bessel function of the first kind of order N, \f$ N \ge 1 \f$.
102 *
103 * If \f$ N == 1 \f$ this returns \ref mx::math::func::jinc() "jinc(x)".
104 *
105 * Otherwise, if x is smaller than \f$ \sqrt{\epsilon} \f$, returns 0.
106 *
107 * \returns the value of JiN(x)
108 *
109 * \ingroup gen_math_bessel
110 */
111template <typename T1, typename T2>
112T2 jincN( const T1 &v, ///< [in] the Bessel function order
113 const T2 &x ///< [in] the argument
114)
115{
116 if( v == 1 )
117 return jinc( x );
118
120
121 if( std::fabs( x ) > taylor_2_bound )
122 {
123 return bessel_j<T1, T2>( v, x ) / ( x );
124 }
125 else
126 {
127 return static_cast<T2>( 0 );
128 }
129}
130
131extern template float jincN<float, float>( const float &v, const float &x );
132
133extern template float jincN<int, float>( const int &v, const float &x );
134
135extern template double jincN<double, double>( const double &v, const double &x );
136
137extern template double jincN<int, double>( const int &v, const double &x );
138
139extern template long double jincN<long double, long double>( const long double &v, const long double &x );
140
141extern template long double jincN<int, long double>( const int &v, const long double &x );
142
143#ifdef HASQUAD
144extern template
145
147 jincN<__float128, __float128>( const __float128 &v, const __float128 &x );
148
149__float128 jincN<int, __float128>( const int &v, const __float128 &x );
150#endif
151
152} // namespace func
153} // namespace math
154} // namespace mx
155
156#endif // math_func_jinc_hpp
Declares and defines Bessel functions of the first kind.
T2 jincN(const T1 &v, const T2 &x)
The JincN function.
Definition jinc.hpp:112
T jinc(const T &x)
The Jinc function.
Definition jinc.hpp:61
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
The mxlib c++ namespace.
Definition mxError.hpp:106