mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
averagePeriodogram.hpp
Go to the documentation of this file.
1/** \file averagePeriodogram.hpp
2 * \brief A class to manage calculation of periodograms from time series data.
3 *
4 * \author Jared R. Males (jaredmales@gmail.com)
5 *
6 * \ingroup signal_processing_files
7 *
8 */
9
10//***********************************************************************//
11// Copyright 2020 Jared R. Males (jaredmales@gmail.com)
12//
13// This file is part of mxlib.
14//
15// mxlib is free software: you can redistribute it and/or modify
16// it under the terms of the GNU General Public License as published by
17// the Free Software Foundation, either version 3 of the License, or
18// (at your option) any later version.
19//
20// mxlib is distributed in the hope that it will be useful,
21// but WITHOUT ANY WARRANTY; without even the implied warranty of
22// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23// GNU General Public License for more details.
24//
25// You should have received a copy of the GNU General Public License
26// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
27//***********************************************************************//
28
29#ifndef averagePeriodogram_hpp
30#define averagePeriodogram_hpp
31
32#include "psdUtils.hpp"
33
34namespace mx
35{
36namespace sigproc
37{
38
39/// Calculate the average periodogram of a time-series.
40/**
41 * Implements the overlapped average periodogram, cf. pp 843 to 845 of \cite 10.5555.1795494. A.k.a. Welch's method
42 * (https://en.wikipedia.org/wiki/Welch's_method).
43 *
44 * This produces
45 * the variance normalized 1-sided PSD estimate of the periodogram.
46 *
47 * Optionally includes a window (by default no window is used, which is equivalent to the rectangle window).
48 *
49 * Optionally includes zero-padding, which is applied after windowing. This can be used to increase frequency
50 * resolution while still allowing overlapping.
51 *
52 * Can also be used to calculate the unaveraged non-overlapped periodogram of the entire time series, with or without
53 * windowing and zero-padding.
54 *
55 * Example:
56 \code
57 typedef float realT;
58
59 mx::fftwEnvironment<realT> fftwEnv; //for efficient fft planning
60
61 std::vector<realT> ts = getTimeSeries(); //Some function to populate ts.
62
63 math::vectorMeanSub(ts); //The time series should be overall mean subtracted.
64
65 realT dt = 0.1; //The sampling of ts is 0.1 seconds.
66
67 averagePeriodogram<realT> avgPgram(2.0/dt, 4.0/dt, dt); //This sets the averaging length to 2 seconds (20 samples),
68 zero padding to 4 seconds, with a 1 second overlap (set automatically)
69
70 avgPgram.win(window::hann); //Set the Hann window
71
72 std::vector<realT> pgram = avgPgram(ts); //Calculate the half-overlapped periodogram estimate for ts.
73
74 //Now output the periodogram estimate. This will give two columns, the first frequency, the second power at that
75 frequency. for(size_t n=0; n< avgPgram.size(); ++n)
76 {
77 std::cout << avgPgram[n] << " " << pgram[n] << "\n";
78 }
79
80 \endcode
81 *
82 * \ingroup psds
83 */
84template <typename realT>
86{
87
88 protected:
89 /** \name Configuration Parameters
90 *
91 *@{
92 */
93
94 size_t m_avgLen{ 0 }; ///< The number of samples in each periodogram estimate.
95 size_t m_overlap{ 0 }; ///< The number of samples by which to overlap. This should almost always be 0.5*m_avgLen.
96 ///< Set 0 for the non-overlapped case.
97
98 size_t m_padLen{ 0 }; ///< The size of the periodogram estimate with zero-padding
99
100 protected:
101 realT m_dt{ 1 }; ///< The time sampling. Only used for normalization and calculation of the frequency scale.
102
103 std::vector<realT> m_win; ///< The window function. By default this is empty, which is equivalent to setting it to
104 ///< the rectangular window.
105
106 ///@}
107
108 size_t m_size{ 0 }; ///< The size of the periodogram vector, calculated as m_avgLen/2 + 1;
109
110 int m_nOver{ 0 }; ///< The number of overlapping segments. Calculated from m_avgLen and m_overlap;
111
112 realT m_df{ 1 }; ///< The frequency sampling. This is used only for normalization and frequency scale output.
113
114 math::ft::fftT<realT, std::complex<realT>, 1, 0> m_fft;
115
116 realT *m_tsWork{ nullptr };
117
118 std::complex<realT> *m_fftWork{ nullptr };
119 size_t m_fftWorkSize{ 0 };
120
121 public:
122 /// C'tor which sets up the optimum overlapped periodogram of the timeseries.
123 /** Sets m_overlap = 0.5*m_avgLen. If you desire the non-overlapped case use
124 * the alternate constructor:
125 * \code
126 averagePeriogram p( avgLen, 0, dt);
127 \endcode
128 */
129 explicit averagePeriodogram( size_t avgLen /**< [in] The length of averaging in samples.*/ );
130
131 /// C'tor which sets up the optimum overlapped periodogram of the timeseries with zero-padding
132 /** Sets m_overlap = 0.5*m_avgLen. If you desire the non-overlapped case use
133 * the alternate constructor:
134 * \code
135 averagePeriogram p( avgLen, 0, padLen, dt);
136 \endcode
137 */
138 explicit averagePeriodogram(
139 size_t avgLen, ///< [in] The length of averaging in samples.
140 size_t padLen ///< [in] [optional] the length of the padded sample. If 0 or omitted then no padding used.
141 );
142
143 /// C'tor which sets up the optimum overlapped periodogram of the timeseries with zero-padding and sets the
144 /// sampling.
145 /** Sets m_overlap = 0.5*m_avgLen. If you desire the non-overlapped case use
146 * the alternate constructor:
147 * \code
148 averagePeriogram p( avgLen, 0, dt);
149 \endcode
150 */
151 averagePeriodogram( size_t avgLen, ///< [in] The length of averaging in samples.
152 size_t padLen, ///< [in] the length of the padded sample. Set to 0 for no padding.
153 realT dt ///< [in] the sampling interval of the time-series
154 );
155
156 /// C'tor setting up an arbitrary overlap.
157 /** Set olap to 0 for the unoverlapped case.
158 */
159 averagePeriodogram( size_t avgLen, ///< [in] The number of samples in each periodgoram estimate.
160 size_t padLen, ///< [in] the length of the padded sample. Set to 0 for no padding.
161 size_t olap, ///< [in] The number of samples by which to overlap. This should almost always be
162 ///< 0.5*m_avgLen. Set 0 for the non-overlapped case.
163 realT dt ///< [in] the sampling interval of the time-series
164 );
165
166 /// D'tor, frees all working memory.
168
169 /// Set the sampling interval of the time-series
170 /** This also sets the frequency scale of the output.
171 */
172 void dt( realT ndt );
173
174 /// Get the sampling interval of the time-series
175 /** \returns m_dt
176 */
177 realT dt();
178
179 /// Get the frequency interval of the periodogram
180 /** \returns m_df
181 */
182 realT df();
183
184 /// Resize the periodogram working memory, setting up the 1/2-overlapped optimum case.
185 /** This sets the overlap to 0.5*avgLen.
186 *
187 * Also performs fft planning.
188 *
189 * \returns 0 on success
190 * \returns -1 on error
191 */
192 int resize( size_t avgLen /**< [in] The number of samples in each periodgoram estimate. */ );
193
194 /// Resize the periodogram working memory.
195 /** Also performs fft planning.
196 *
197 * \returns 0 on success
198 * \returns -1 on error
199 */
200 int resize( size_t avgLen, ///< [in] The number of samples in each periodgoram estimate.
201 size_t padLen, ///< [in] the length of the sample after zero-padding.
202 size_t olap ///< [in] The number of samples by which to overlap. This should almost always be
203 ///< 0.5*m_avgLen. Set 0 for the non-overlapped case.
204 );
205
206 /// Get a reference to the window vector.
207 /** This allows population of the window with any arbitrary function. You should call
208 * resizeWin() before using this to make sure that the vector has the correct length.
209 *
210 * \returns a reference to m_win.
211 */
212 std::vector<realT> &win();
213
214 /// Set the window vector using a function.
215 /** This will resize m_win, and then call the function with m_win as the argument.
216 * For example to use the hann window defined \ref signal_windows1D:
217 * \code
218 avgPgram.win( window::hann );
219 \endcode
220 * which will set the Hann window.
221 */
222 void win( void(*winFunc)(std::vector<realT> &) /**<[in] pointer to a function which takes a pre-allocated vector and fills it in with a window function*/);
223
224 /// Resize the window and, unless not desired, initialize to the rectangular window by setting all 1s.
225 /** If `setRect=false` then the window is not initialized.
226 */
227 void resizeWin( bool setRect = true /**< [in] [optional] if false, then the window is not initialized to 1 */ );
228
229 /// Calculate the periodogram for a time-series.
230 /**
231 *
232 */
233 void operator()( realT *pgram, ///< [out] a pre-allocated to size() array which will be populated with the
234 ///< periodogram of the time-series
235 const realT *ts, ///< [in] the time-series
236 size_t sz ///< [in] the length of the time-series array
237 );
238
239 /// Calculate the periodogram for a time-series.
240 /** \overload
241 *
242 */
243 void operator()( std::vector<realT> &pgram, ///< [out] a vector which will be allocated and populated with the
244 ///< periodogram of the time-series
245 const std::vector<realT> &ts ///< [in] the time-series
246 );
247
248 /// Calculate the periodogram for a time-series.
249 /** \overload
250 *
251 * \returns the periodogram as a vector.
252 */
253 std::vector<realT> operator()( std::vector<realT> &ts /**< [in] the time-series*/ );
254
255 /// Return the size of the periodogram.
256 /**
257 *
258 * \returns the size of the periodogram estimate for the current setup.
259 */
260 size_t size();
261
262 /// Get the frequency at a given point in the periodogram.
263 /**
264 * \returns the frequency at point n in the periodogram.
265 */
266 realT operator[]( size_t n /**<[in] the point in the periodogram at which the frequency is desired*/ );
267};
268
269template <typename realT>
271{
272 resize( avgLen, 0, 0.5 * avgLen );
273 dt( 1 );
274}
275
276template <typename realT>
278{
279 resize( avgLen, padLen, 0.5 * avgLen );
280 dt( 1 );
281}
282
283template <typename realT>
284averagePeriodogram<realT>::averagePeriodogram( size_t avgLen, size_t padLen, realT ndt )
285{
286 resize( avgLen, padLen, 0.5 * avgLen );
287 dt( ndt );
288}
289
290template <typename realT>
291averagePeriodogram<realT>::averagePeriodogram( size_t avgLen, size_t padLen, size_t olap, realT ndt )
292{
293 resize( avgLen, padLen, olap );
294 dt( ndt );
295}
296
297template <typename realT>
299{
300 if( m_tsWork )
301 {
302 fftw_free( m_tsWork );
303 }
304
305 if( m_fftWork )
306 {
307 fftw_free( m_fftWork );
308 }
309}
310
311template <typename realT>
313{
314 m_dt = ndt;
315 m_df = 1.0 / ( m_padLen * m_dt );
316}
317
318template <typename realT>
320{
321 return m_dt;
322}
323
324template <typename realT>
326{
327 return m_df;
328}
329
330template <typename realT>
332{
333 return resize( avgLen, 0, 0.5 * avgLen );
334}
335
336template <typename realT>
337int averagePeriodogram<realT>::resize( size_t avgLen, size_t padLen, size_t olap )
338{
339 m_avgLen = avgLen;
340 m_padLen = padLen;
341
342 if( m_padLen < m_avgLen )
343 {
344 m_padLen = m_avgLen;
345 }
346
347 m_size = m_padLen / 2 + 1;
348
349 m_df = 1.0 / ( m_padLen * m_dt );
350
351 m_overlap = olap;
352
353 m_nOver = ( m_avgLen - m_overlap );
354
355 m_fft.plan( m_padLen, math::ft::dir::forward, false );
356
357 if( m_tsWork )
358 {
359 fftw_free( m_tsWork );
360 }
361
362 m_tsWork = math::ft::fftw_malloc<realT>( m_padLen );
363
364 if( m_fftWork )
365 {
366 fftw_free( m_fftWork );
367 }
368
369 m_fftWork = math::ft::fftw_malloc<std::complex<realT>>( ( m_padLen / 2 + 1 ) );
370
371 return 0;
372}
373
374template <typename realT>
376{
377 return m_win;
378}
379
380template <typename realT>
381void averagePeriodogram<realT>::win( void ( *winFunc )( std::vector<realT> & ) )
382{
383 resizeWin( false );
384 winFunc( m_win );
385}
386
387template <typename realT>
389{
390 if( setRect )
391 {
392 m_win.resize( m_avgLen, static_cast<realT>( 1 ) );
393 }
394 else
395 {
396 m_win.resize( m_avgLen );
397 }
398}
399
400template <typename realT>
401void averagePeriodogram<realT>::operator()( realT *pgram, const realT *ts, size_t sz )
402{
403 if( m_win.size() > 0 && m_win.size() != m_avgLen )
404 {
405 std::cerr << "averagePeriodogram: Window size not correct.\n";
406 }
407
408 int Navg = sz / m_nOver;
409
410 while( Navg * m_nOver + m_avgLen > sz )
411 --Navg;
412
413 if( Navg < 1 )
414 Navg = 1; // Always do at least 1!
415
416 for( int i = 0; i < Navg; ++i )
417 {
418 if( m_win.size() == m_avgLen ) // no if inside the for loop
419 {
420 for( size_t j = 0; j < m_avgLen; ++j )
421 {
422 m_tsWork[j] = ts[i * m_nOver + j] * m_win[j];
423 }
424 }
425 else
426 {
427 for( size_t j = 0; j < m_avgLen; ++j )
428 {
429 m_tsWork[j] = ts[i * m_nOver + j];
430 }
431 }
432
433 // Zero-pad
434 for( size_t j = m_avgLen; j < m_padLen; ++j )
435 {
436 m_tsWork[j] = 0;
437 }
438
439 m_fft( m_fftWork, m_tsWork );
440
441 for( size_t j = 0; j < m_size; ++j )
442 pgram[j] += norm( m_fftWork[j] );
443 }
444
445 realT pgramVar = psdVar1sided( m_df, pgram, m_size );
446
447 realT tsVar = mx::math::vectorVariance( ts, sz );
448
449 for( size_t j = 0; j < m_size; ++j )
450 pgram[j] *= tsVar / pgramVar;
451}
452
453template <typename realT>
454void averagePeriodogram<realT>::operator()( std::vector<realT> &pgram, const std::vector<realT> &ts )
455{
456 pgram.resize( m_size );
457 operator()( pgram.data(), ts.data(), ts.size() );
458}
459
460template <typename realT>
461std::vector<realT> averagePeriodogram<realT>::operator()( std::vector<realT> &ts )
462{
463 std::vector<realT> pgram;
464 operator()( pgram, ts );
465 return pgram;
466}
467
468template <typename realT>
470{
471 return m_size;
472}
473
474template <typename realT>
476{
477 return n * m_df;
478}
479
480} // namespace sigproc
481} // namespace mx
482
483#endif // averagePeriodogram_hpp
Calculate the average periodogram of a time-series.
~averagePeriodogram()
D'tor, frees all working memory.
int resize(size_t avgLen)
Resize the periodogram working memory, setting up the 1/2-overlapped optimum case.
realT df()
Get the frequency interval of the periodogram.
size_t m_padLen
The size of the periodogram estimate with zero-padding.
realT m_dt
The time sampling. Only used for normalization and calculation of the frequency scale.
size_t m_avgLen
The number of samples in each periodogram estimate.
size_t m_size
The size of the periodogram vector, calculated as m_avgLen/2 + 1;.
void operator()(realT *pgram, const realT *ts, size_t sz)
Calculate the periodogram for a time-series.
void resizeWin(bool setRect=true)
Resize the window and, unless not desired, initialize to the rectangular window by setting all 1s.
averagePeriodogram(size_t avgLen)
C'tor which sets up the optimum overlapped periodogram of the timeseries.
size_t size()
Return the size of the periodogram.
realT operator[](size_t n)
Get the frequency at a given point in the periodogram.
int m_nOver
The number of overlapping segments. Calculated from m_avgLen and m_overlap;.
realT dt()
Get the sampling interval of the time-series.
std::vector< realT > & win()
Get a reference to the window vector.
realT m_df
The frequency sampling. This is used only for normalization and frequency scale output.
@ forward
Specifies the forward transform.
realT psdVar1sided(realT df, const realT *PSD, size_t sz, realT half=0.5)
Calculate the variance of a 1-D, 1-sided PSD.
Definition psdUtils.hpp:66
valueT vectorVariance(const valueT *vec, size_t sz, valueT mean)
Calculate the variance of a vector relative to a supplied mean value.
The mxlib c++ namespace.
Definition mxError.hpp:106
Tools for working with PSDs.