30#ifndef math_zernike_hpp
31#define math_zernike_hpp
37#include "../math/func/bessel.hpp"
38#include "../math/func/jinc.hpp"
39#include "../math/func/factorial.hpp"
40#include "../math/func/sign.hpp"
41#include "../math/constants.hpp"
42#include "../mxError.hpp"
100template <
typename realT>
102 std::vector<realT> &c,
111 mxError(
"zernikeRCoeffs", MXE_INVALIDARG,
"n cannot be less than m in the Zernike polynomials" );
116 if( ( n - m ) % 2 > 0 )
122 int ul = 0.5 * ( n - m ) + 1;
126 for(
int k = 0; k < ul; ++k )
128 c[k] = pow( -1.0, k ) * math::func::factorial<realT>( n - k ) /
129 ( math::func::factorial<realT>( k ) * math::func::factorial<realT>( 0.5 * ( n + m ) - k ) *
130 math::func::factorial<realT>( 0.5 * ( n - m ) - k ) );
137extern template int zernikeRCoeffs<float>( std::vector<float> &c,
int n,
int m );
139extern template int zernikeRCoeffs<double>( std::vector<double> &c,
int n,
int m );
141extern template int zernikeRCoeffs<long double>( std::vector<long double> &c,
int n,
int m );
144extern template int zernikeRCoeffs<__float128>( std::vector<__float128> &c,
int n,
int m );
156template <
typename realT,
typename calcRealT>
160 std::vector<calcRealT>
167 if( ( n - m ) % 2 > 0 )
173 if( c.size() != 0.5 * ( n - m ) + 1 )
175 mxError(
"zernikeR", MXE_INVALIDARG,
"c vector has incorrect length for n and m." );
180 for(
size_t k = 0; k < c.size(); ++k )
182 R += c[k] * pow( rho, n - 2 * k );
188extern template float zernikeR<float, double>(
float rho,
int n,
int m, std::vector<double> &c );
190extern template double zernikeR<double, double>(
double rho,
int n,
int m, std::vector<double> &c );
192extern template long double
193zernikeR<long double, long double>(
long double rho,
int n,
int m, std::vector<long double> &c );
196extern template __float128 zernikeR<__float128, __float128>( __float128 rho,
int n,
int m, std::vector<__float128> &c );
207template <
typename realT,
typename calcRealT>
216 if( ( n - m ) % 2 > 0 )
221 std::vector<calcRealT> c;
226 return zernikeR<realT, calcRealT>( rho, n, m, c );
229extern template float zernikeR<float, double>(
float rho,
int n,
int m );
231extern template double zernikeR<double, double>(
double rho,
int n,
int m );
233extern template long double zernikeR<long double, long double>(
long double rho,
int n,
int m );
236extern template __float128 zernikeR<__float128, __float128>( __float128 rho,
int n,
int m );
253template <
typename realT,
typename calcRealT>
254realT
zernike( realT rho, realT phi,
int n,
int m, std::vector<calcRealT> &c )
258 if( n == 0 && m == 0 )
276 return sqrt( (realT)n + 1 ) * zernikeR<realT, calcRealT>( rho, n, m, c ) * azt;
279extern template float zernike<float, double>(
float rho,
float phi,
int n,
int m, std::vector<double> &c );
281extern template double zernike<double, double>(
double rho,
double phi,
int n,
int m, std::vector<double> &c );
283extern template long double
284zernike<long double, long double>(
long double rho,
long double phi,
int n,
int m, std::vector<long double> &c );
287extern template __float128
288zernike<__float128, __float128>( __float128 rho, __float128 phi,
int n,
int m, std::vector<__float128> &c );
300template <
typename realT,
typename calcRealT>
308 std::vector<calcRealT> c;
310 if( zernikeRCoeffs<calcRealT>( c, n, m ) < 0 )
313 return zernike<realT, calcRealT>( rho, phi, n, m, c );
316extern template float zernike<float, double>(
float rho,
float phi,
int n,
int m );
318extern template double zernike<double, double>(
double rho,
double phi,
int n,
int m );
320extern template long double zernike<long double, long double>(
long double rho,
long double phi,
int n,
int m );
323extern template __float128 zernike<__float128, __float128>( __float128 rho, __float128 phi,
int n,
int m );
334template <
typename realT,
typename calcRealT>
346 return zernike<realT, calcRealT>( rho, phi, n, m );
349extern template float zernike<float, double>(
float rho,
float phi,
int j );
351extern template double zernike<double, double>(
double rho,
double phi,
int j );
353extern template long double zernike<long double, long double>(
long double rho,
long double phi,
int j );
356extern template __float128 zernike<__float128, __float128>( __float128 rho, __float128 phi,
int j );
371template <
typename arrayT,
typename calcRealT,
int overscan = 2>
375 typename arrayT::Scalar xcen,
376 typename arrayT::Scalar ycen,
377 typename arrayT::Scalar rad = -1 )
379 typedef typename arrayT::Scalar realT;
385 std::vector<calcRealT> c;
390 size_t l0 = arr.rows();
391 size_t l1 = arr.cols();
394 rad = 0.5 * std::min( l0 - 1, l1 - 1 );
396 for(
size_t i = 0; i < l0; ++i )
398 for(
size_t j = 0; j < l1; ++j )
403 r = std::sqrt( x * x + y * y );
406 if( r > rad && r <= rad + ( 1.0 / overscan ) )
413 phi = std::atan2( y, x );
414 arr( i, j ) =
zernike( rho, phi, n, m, c );
437template <
typename arrayT,
typename calcRealT>
439 arrayT &arr,
int j,
typename arrayT::Scalar xcen,
typename arrayT::Scalar ycen,
typename arrayT::Scalar rad = -1 )
441 typedef typename arrayT::Scalar realT;
448 return zernike<arrayT, calcRealT>( arr, n, m, xcen, ycen, rad );
462template <
typename arrayT,
typename calcRealT>
463int zernike( arrayT &arr,
int n,
int m,
typename arrayT::Scalar rad = -1 )
465 typename arrayT::Scalar xcen = 0.5 * ( arr.rows() - 1.0 );
466 typename arrayT::Scalar ycen = 0.5 * ( arr.cols() - 1.0 );
468 return zernike<arrayT, calcRealT>( arr, n, m, xcen, ycen, rad );
482template <
typename arrayT,
typename calcRealT>
483int zernike( arrayT &arr,
int j,
typename arrayT::Scalar rad = -1 )
485 typename arrayT::Scalar xcen = 0.5 * ( arr.rows() - 1.0 );
486 typename arrayT::Scalar ycen = 0.5 * ( arr.cols() - 1.0 );
488 return zernike<arrayT, calcRealT>( arr, j, xcen, ycen, rad );
500template <
typename cubeT,
typename calcRealT>
503 typename cubeT::Scalar rad =
508 typedef typename cubeT::imageT arrayT;
510 typename cubeT::imageT im;
512 im.resize( cube.rows(), cube.cols() );
515 for(
int i = 0; i < cube.planes(); ++i )
517 rv = zernike<arrayT, calcRealT>( im, minj + i, rad );
523 cube.image( i ) = im;
540template <
typename realT>
550 std::complex<realT> Q;
565 Q = sqrt( n + 1 ) * Q;
569 Q = Q * pow( -1, 0.5 * ( n - m ) ) * pow( std::complex<realT>( { 0, 1 } ), m ) * sqrt( 2 ) * cos( m * phi );
573 Q = Q * pow( -1, 0.5 * ( n + m ) ) * pow( std::complex<realT>( { 0, 1 } ), -m ) * sqrt( 2 ) * sin( -m * phi );
577 Q = Q * pow( -1, 0.5 * n );
594template <
typename realT>
618 realT Q2 = ( n + 1 ) * ( B * B );
622 Q2 = 2 * Q2 * pow( cos( m * phi ), 2 );
626 Q2 = 2 * Q2 * pow( sin( -m * phi ), 2 );
632extern template float zernikeQNorm<float>(
float k,
float phi,
int n,
int m );
634extern template double zernikeQNorm<double>(
double k,
double phi,
int n,
int m );
636extern template long double zernikeQNorm<long double>(
long double k,
long double phi,
int n,
int m );
639extern template __float128 zernikeQNorm<__float128>( __float128 k, __float128 phi,
int n,
int m );
650template <
typename realT>
674template <
typename arrayT>
683 if( arr.rows() != k.rows() || arr.cols() != k.cols() )
685 mxError(
"zernikeQNorm", MXE_INVALIDARG,
"output array and input k are not the same size" );
689 if( arr.rows() != phi.rows() || arr.cols() != phi.cols() )
691 mxError(
"zernikeQNorm", MXE_INVALIDARG,
"output array and input phi are not the same size" );
699 for(
size_t i = 0; i < arr.rows(); ++i )
701 for(
size_t j = 0; j < arr.cols(); ++j )
703 arr( i, j ) =
zernikeQNorm( k( i, j ), phi( i, j ), n, m );
710template <
typename realT>
717template <
typename realT>
724template <
typename realT>
731template <
typename realT>
738template <
typename realT>
745template <
typename realT>
T2 bessel_j(T1 v, T2 x)
Bessel Functions of the First Kind.
T2 jincN(const T1 &v, const T2 &x)
The JincN function.
T jinc(const T &x)
The Jinc function.
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
int noll_j(unsigned n, int m)
Get the Noll index j corresponding to Zernike coefficients n,m.
realT zernikeR(realT rho, int n, int m, std::vector< calcRealT > &c)
Calculate the value of a Zernike radial polynomial at a given separation.
realT zernikePPiston(const realT &kD)
Calculate the spatial power spectrum of Piston.
realT zernikePDefocus(const realT &kD)
Calculate the spatial power spectrum of Defocus.
realT zernikePTrefoil(const realT &kD)
Calculate the spatial power spectrum of Trefoil.
realT zernike(realT rho, realT phi, int n, int m, std::vector< calcRealT > &c)
Calculate the value of a Zernike radial polynomial at a given radius and angle.
int nZernRadOrd(unsigned n)
Get the number of Zernikes up to and including a radial order.
realT zernikePTipTilt(const realT &kD)
Calculate the spatial power spectrum of Tip & Tilt.
int noll_nm(int &n, int &m, int j)
Get the Zernike coefficients n,m corrresponding the Noll index j.
realT zernikeQNorm(realT k, realT phi, int n, int m)
Calculate the square-normed Fourier transform of a Zernike polynomial at position (k,...
std::complex< realT > zernikeQ(realT k, realT phi, int n, int m)
Calculate the square-normed Fourier transform of a Zernike polynomial at position (k,...
realT zernikePAstig(const realT &kD)
Calculate the spatial power spectrum of Astigmatism.
realT zernikePComa(const realT &kD)
Calculate the spatial power spectrum of Coma.
int zernikeRCoeffs(std::vector< realT > &c, int n, int m)
Calculate the coefficients of a Zernike radial polynomial.
int zernikeBasis(cubeT &cube, typename cubeT::Scalar rad=-1, int minj=2)
Fill in an Eigencube-like array with Zernike polynomials in Noll order.