mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
zernike.hpp
Go to the documentation of this file.
1/** \file zernike.hpp
2 * \author Jared R. Males (jaredmales@gmail.com)
3 * \brief Working with the Zernike polynomials.
4 *
5 * \todo the basic zernike polys should be in math::func.
6 *
7 * \ingroup signal_processing_files
8 *
9 */
10
11//***********************************************************************//
12// Copyright 2015-2020 Jared R. Males (jaredmales@gmail.com)
13//
14// This file is part of mxlib.
15//
16// mxlib is free software: you can redistribute it and/or modify
17// it under the terms of the GNU General Public License as published by
18// the Free Software Foundation, either version 3 of the License, or
19// (at your option) any later version.
20//
21// mxlib is distributed in the hope that it will be useful,
22// but WITHOUT ANY WARRANTY; without even the implied warranty of
23// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24// GNU General Public License for more details.
25//
26// You should have received a copy of the GNU General Public License
27// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
28//***********************************************************************//
29
30#ifndef math_zernike_hpp
31#define math_zernike_hpp
32
33#include <cmath>
34#include <complex>
35#include <vector>
36
37#include "../math/func/bessel.hpp"
38#include "../math/func/jinc.hpp"
39#include "../math/func/factorial.hpp"
40#include "../math/func/sign.hpp"
41#include "../math/constants.hpp"
42#include "../mxError.hpp"
43
44namespace mx
45{
46namespace sigproc
47{
48
49/**
50 * \ingroup zernike_basis
51 * @{
52 */
53
54/// Get the Zernike coefficients n,m corrresponding the Noll index j.
55/** Calculates the values of (n,m) for an index j following Noll (1976) \cite noll_1976
56 * See also: http://en.wikipedia.org/wiki/Zernike_polynomials
57 *
58 * If j is odd, this returns m <= 0.
59 *
60 *
61 * \retval 0 on success
62 * \retval -1 on error (j < 1)
63 *
64 * \test Scenario: testing noll_nm \ref tests_sigproc_zernike_noll_nm "[test doc]"
65 */
66int noll_nm( int &n, ///< [out] n the radial index of the Zernike polynomial
67 int &m, ///< [out] m the azimuthal index of the Zernnike polynomial. m < 0 if j odd.
68 int j ///< [in] j the Noll index, j > 0.
69);
70
71/// Get the Noll index j corresponding to Zernike coefficients n,m
72/** Calculates the value j for(n,m) following Noll (1976) \cite noll_1976
73 * See also: http://en.wikipedia.org/wiki/Zernike_polynomials
74 *
75 * \retval >= 0 on success
76 * \retval -1 on error (n-m odd)
77 *
78 */
79int noll_j( unsigned n, ///< [in] n the radial index of the Zernike polynomial
80 int m ///< [in] m the azimuthal index of the Zernnike polynomial.
81);
82
83/// Get the number of Zernikes up to and including a radial order.
84/** Calculates the total number of Zernike polynomials through radial order \p n. See Noll (1976) \cite noll_1976
85 * See also: http://en.wikipedia.org/wiki/Zernike_polynomials
86 *
87 * \retval the number of
88 * \retval -1 on error (n-m odd)
89 *
90 */
91int nZernRadOrd( unsigned n /**< [n] the radial order */ );
92
93/// Calculate the coefficients of a Zernike radial polynomial
94/**
95 * \retval 0 on success
96 * \retval -1 on error
97 *
98 * \tparam realT is a real floating type
99 */
100template <typename realT>
102 std::vector<realT> &c, ///< [out] allocated to length \f$ 0.5(n-m)+1\f$ and filled with the coefficients.
103 int n, ///< [in] the radial index of the Zernike polynomial.
104 int m ///< [in] the azimuthal index of the Zernike polynomial.
105)
106{
107 m = abs( m );
108
109 if( n < m )
110 {
111 mxError( "zernikeRCoeffs", MXE_INVALIDARG, "n cannot be less than m in the Zernike polynomials" );
112 return -1;
113 }
114
115 // If odd, it's 0.
116 if( ( n - m ) % 2 > 0 )
117 {
118 c.resize( 1, 0 );
119 return 0;
120 }
121
122 int ul = 0.5 * ( n - m ) + 1;
123
124 c.resize( ul );
125
126 for( int k = 0; k < ul; ++k )
127 {
128 c[k] = pow( -1.0, k ) * math::func::factorial<realT>( n - k ) /
129 ( math::func::factorial<realT>( k ) * math::func::factorial<realT>( 0.5 * ( n + m ) - k ) *
130 math::func::factorial<realT>( 0.5 * ( n - m ) - k ) );
131 }
132
133 return 0;
134}
135
136// Explicit instantiations:
137extern template int zernikeRCoeffs<float>( std::vector<float> &c, int n, int m );
138
139extern template int zernikeRCoeffs<double>( std::vector<double> &c, int n, int m );
140
141extern template int zernikeRCoeffs<long double>( std::vector<long double> &c, int n, int m );
142
143#ifdef HASQUAD
144extern template int zernikeRCoeffs<__float128>( std::vector<__float128> &c, int n, int m );
145#endif
146
147/// Calculate the value of a Zernike radial polynomial at a given separation.
148/**
149 *
150 * \retval -9999 indicates a possible error
151 * \retval R the value of the Zernike radial polynomial otherwise
152 *
153 * \tparam realT is a real floating type
154 * \tparam calcRealT is a real floating type used for internal calcs, should be at least double.
155 */
156template <typename realT, typename calcRealT>
157realT zernikeR( realT rho, ///< [in] the radial coordinate, \f$ 0 \le \rho \le 1 \f$.
158 int n, ///< [in] the radial index of the Zernike polynomial.
159 int m, ///< [in] the azimuthal index of the Zernike polynomial.
160 std::vector<calcRealT>
161 &c ///< [in] contains the radial polynomial coeeficients, and must be of length \f$ 0.5(n-m)+1\f$.
162)
163{
164 m = abs( m );
165
166 // If odd, it's 0.
167 if( ( n - m ) % 2 > 0 )
168 {
169 c.resize( 1, 0 );
170 return 0.0;
171 }
172
173 if( c.size() != 0.5 * ( n - m ) + 1 )
174 {
175 mxError( "zernikeR", MXE_INVALIDARG, "c vector has incorrect length for n and m." );
176 return -9999;
177 }
178
179 realT R = 0.0;
180 for( size_t k = 0; k < c.size(); ++k )
181 {
182 R += c[k] * pow( rho, n - 2 * k );
183 }
184
185 return R;
186}
187
188extern template float zernikeR<float, double>( float rho, int n, int m, std::vector<double> &c );
189
190extern template double zernikeR<double, double>( double rho, int n, int m, std::vector<double> &c );
191
192extern template long double
193zernikeR<long double, long double>( long double rho, int n, int m, std::vector<long double> &c );
194
195#ifdef HASQUAD
196extern template __float128 zernikeR<__float128, __float128>( __float128 rho, int n, int m, std::vector<__float128> &c );
197#endif
198
199/// Calculate the value of a Zernike radial polynomial at a given separation.
200/**
201 * \retval -9999 indicates a possible error
202 * \retval R the value of the Zernike radial polynomial otherwise
203 *
204 * \tparam realT is a real floating type
205 * \tparam calcRealT is a real floating type used for internal calculations, should be at least double
206 */
207template <typename realT, typename calcRealT>
208realT zernikeR( realT rho, ///< [in] the radial coordinate, \f$ 0 \le \rho \le 1 \f$.
209 int n, ///< [in] the radial index of the Zernike polynomial.
210 int m ///< [in] the azimuthal index of the Zernike polynomial.
211)
212{
213 m = abs( m );
214
215 // If odd, it's 0.
216 if( ( n - m ) % 2 > 0 )
217 {
218 return 0.0;
219 }
220
221 std::vector<calcRealT> c;
222
223 if( zernikeRCoeffs( c, n, m ) < 0 )
224 return -9999;
225
226 return zernikeR<realT, calcRealT>( rho, n, m, c );
227}
228
229extern template float zernikeR<float, double>( float rho, int n, int m );
230
231extern template double zernikeR<double, double>( double rho, int n, int m );
232
233extern template long double zernikeR<long double, long double>( long double rho, int n, int m );
234
235#ifdef HASQUAD
236extern template __float128 zernikeR<__float128, __float128>( __float128 rho, int n, int m );
237#endif
238
239/// Calculate the value of a Zernike radial polynomial at a given radius and angle.
240/**
241 * \param[in] rho is the radial coordinate, \f$ 0 \le \rho \le 1 \f$.
242 * \param[in] phi is the azimuthal angle (in radians)
243 * \param[in] n is the radial index of the Zernike polynomial.
244 * \param[in] m is the azimuthal index of the Zernike polynomial.
245 * \param[in] c is contains the radial polynomial coeeficients, and must be of length \f$ 0.5(n-m)+1\f$.
246 *
247 * \retval -9999 indicates a possible error
248 * \retval R the value of the Zernike radial polynomial otherwise
249 *
250 * \tparam realT is a real floating type
251 * \tparam calcRealT is a real floating type used for internal calculations, should be at least double
252 */
253template <typename realT, typename calcRealT>
254realT zernike( realT rho, realT phi, int n, int m, std::vector<calcRealT> &c )
255{
256 realT azt;
257
258 if( n == 0 && m == 0 )
259 {
260 return 1.0;
261 }
262
263 if( m < 0 )
264 {
265 azt = math::root_two<realT>() * sin( -m * phi );
266 }
267 else if( m > 0 )
268 {
269 azt = math::root_two<realT>() * cos( m * phi );
270 }
271 else
272 {
273 azt = 1.0;
274 }
275
276 return sqrt( (realT)n + 1 ) * zernikeR<realT, calcRealT>( rho, n, m, c ) * azt;
277}
278
279extern template float zernike<float, double>( float rho, float phi, int n, int m, std::vector<double> &c );
280
281extern template double zernike<double, double>( double rho, double phi, int n, int m, std::vector<double> &c );
282
283extern template long double
284zernike<long double, long double>( long double rho, long double phi, int n, int m, std::vector<long double> &c );
285
286#ifdef HASQUAD
287extern template __float128
288zernike<__float128, __float128>( __float128 rho, __float128 phi, int n, int m, std::vector<__float128> &c );
289#endif
290
291/// Calculate the value of a Zernike radial polynomial at a given radius and angle.
292/**
293 *
294 * \retval -9999 indicates a possible error
295 * \retval R the value of the Zernike radial polynomial otherwise
296 *
297 * \tparam realT is a real floating type
298 * \tparam calcRealT is a real floating type used for internal calculations, should be at least double
299 */
300template <typename realT, typename calcRealT>
301realT zernike( realT rho, ///< [in] the radial coordinate, \f$ 0 \le \rho \le 1 \f$.
302 realT phi, ///< [in] the azimuthal angle (in radians)
303 int n, ///< [in] the radial index of the Zernike polynomial.
304 int m ///< [in] the azimuthal index of the Zernike polynomial.
305)
306{
307
308 std::vector<calcRealT> c;
309
310 if( zernikeRCoeffs<calcRealT>( c, n, m ) < 0 )
311 return -9999;
312
313 return zernike<realT, calcRealT>( rho, phi, n, m, c );
314}
315
316extern template float zernike<float, double>( float rho, float phi, int n, int m );
317
318extern template double zernike<double, double>( double rho, double phi, int n, int m );
319
320extern template long double zernike<long double, long double>( long double rho, long double phi, int n, int m );
321
322#ifdef HASQUAD
323extern template __float128 zernike<__float128, __float128>( __float128 rho, __float128 phi, int n, int m );
324#endif
325
326/// Calculate the value of a Zernike radial polynomial at a given radius and angle.
327/**
328 * \retval -9999 indicates a possible error
329 * \retval R the value of the Zernike radial polynomial otherwise
330 *
331 * \tparam realT is a real floating type
332 * \tparam calcRealT is a real floating type used for internal calculations, should be at least double
333 */
334template <typename realT, typename calcRealT>
335realT zernike( realT rho, ///< [in] the radial coordinate, \f$ 0 \le \rho \le 1 \f$.
336 realT phi, ///< [in] the azimuthal angle (in radians)
337 int j ///< [in] the Noll index of the Zernike polynomial.
338)
339{
340 int n, m;
341
342 // Get n and m from j
343 if( noll_nm( n, m, j ) < 0 )
344 return -9999;
345
346 return zernike<realT, calcRealT>( rho, phi, n, m );
347}
348
349extern template float zernike<float, double>( float rho, float phi, int j );
350
351extern template double zernike<double, double>( double rho, double phi, int j );
352
353extern template long double zernike<long double, long double>( long double rho, long double phi, int j );
354
355#ifdef HASQUAD
356extern template __float128 zernike<__float128, __float128>( __float128 rho, __float128 phi, int j );
357#endif
358
359/// Fill in an Eigen-like array with a Zernike polynomial
360/** Sets any pixel which is at rad <= r < rad+0.5 pixels to rho = 1, to be consistent with mx::circularPupil
361 *
362 * \param[out] arr is the allocated array with an Eigen-like interface. The rows() and cols() members are used to size
363 * the polynomial. \param[in] n is the radial index of the polynomial \param[in] m is the azimuthal index of the
364 * polynomial \param[in] xcen is the x coordinate of the desired center of the polynomial, in pixels \param[in] ycen is
365 * the y coordinate of the desired center of the polynomial, in pixels \param[in] rad [optional] is the desired radius.
366 * If rad <= 0, then the maximum radius based on dimensions of m is used.
367 *
368 * \tparam realT is a real floating type
369 * \tparam calcRealT is a real floating type used for internal calculations, should be at least double
370 */
371template <typename arrayT, typename calcRealT, int overscan = 2>
372int zernike( arrayT &arr,
373 int n,
374 int m,
375 typename arrayT::Scalar xcen,
376 typename arrayT::Scalar ycen,
377 typename arrayT::Scalar rad = -1 )
378{
379 typedef typename arrayT::Scalar realT;
380 realT x;
381 realT y;
382 realT r, rho;
383 realT phi;
384
385 std::vector<calcRealT> c;
386
387 if( zernikeRCoeffs( c, n, m ) < 0 )
388 return -1;
389
390 size_t l0 = arr.rows();
391 size_t l1 = arr.cols();
392
393 if( rad <= 0 )
394 rad = 0.5 * std::min( l0 - 1, l1 - 1 );
395
396 for( size_t i = 0; i < l0; ++i )
397 {
398 for( size_t j = 0; j < l1; ++j )
399 {
400 x = i - xcen;
401 y = j - ycen;
402
403 r = std::sqrt( x * x + y * y );
404
405 // This is to be consistent with mx::circularPupil while still respecting the Zernike rules
406 if( r > rad && r <= rad + ( 1.0 / overscan ) )
407 r = rad;
408
409 rho = r / rad;
410
411 if( rho <= 1.0 )
412 {
413 phi = std::atan2( y, x );
414 arr( i, j ) = zernike( rho, phi, n, m, c );
415 }
416 else
417 {
418 arr( i, j ) = 0.0;
419 }
420 }
421 }
422 return 0;
423}
424
425/// Fill in an Eigen-like array with a Zernike polynomial
426/** Sets any pixel which is at rad <= r <= rad+0.5 pixels to rho = 1, to be consistent with mx::circularPupil
427 *
428 * \param[out] arr is the allocated array with an Eigen-like interface. The rows() and cols() members are used to size
429 * the polynomial. \param[in] j is the Noll index of the polynomial \param[in] xcen is the x coordinate of the desired
430 * center of the polynomial, in pixels \param[in] ycen is the y coordinate of the desired center of the polynomial, in
431 * pixels \param[in] rad [optional] is the desired radius. If rad <= 0, then the maximum radius based on dimensions of
432 * m is used.
433 *
434 * \tparam realT is a real floating type
435 * \tparam calcRealT is a real floating type used for internal calculations, should be at least double
436 */
437template <typename arrayT, typename calcRealT>
439 arrayT &arr, int j, typename arrayT::Scalar xcen, typename arrayT::Scalar ycen, typename arrayT::Scalar rad = -1 )
440{
441 typedef typename arrayT::Scalar realT;
442
443 int n, m;
444
445 if( noll_nm( n, m, j ) < 0 )
446 return -1;
447
448 return zernike<arrayT, calcRealT>( arr, n, m, xcen, ycen, rad );
449}
450
451/// Fill in an Eigen-like array with a Zernike polynomial
452/** The geometric center of the array, 0.5*(arr.rows()-1), 0.5*(arr.cols()-1), is used as the center.
453 * Sets any pixel which is at rad <= r < rad+0.5 pixels to rho = 1, to be consistent with mx::circularPupil
454 *
455 * \param[out] arr is the allocated array with an Eigen-like interface. The rows() and cols() members are used to size
456 * the polynomial. \param[in] j is the Noll index of the polynomial \param[in] rad [optional] is the desired radius. If
457 * rad <= 0, then the maximum radius based on dimensions of m is used.
458 *
459 * \tparam realT is a real floating type
460 * \tparam calcRealT is a real floating type used for internal calculations, should be at least double
461 */
462template <typename arrayT, typename calcRealT>
463int zernike( arrayT &arr, int n, int m, typename arrayT::Scalar rad = -1 )
464{
465 typename arrayT::Scalar xcen = 0.5 * ( arr.rows() - 1.0 );
466 typename arrayT::Scalar ycen = 0.5 * ( arr.cols() - 1.0 );
467
468 return zernike<arrayT, calcRealT>( arr, n, m, xcen, ycen, rad );
469}
470
471/// Fill in an Eigen-like array with a Zernike polynomial
472/** The geometric center of the array, 0.5*(arr.rows()-1), 0.5*(arr.cols()-1), is used as the center.
473 * Sets any pixel which is at rad <= r < rad+0.5 pixels to rho = 1, to be consistent with mx::circularPupil
474 *
475 * \param[out] arr is the allocated array with an Eigen-like interface. The rows() and cols() members are used to size
476 * the polynomial. \param[in] j is the Noll index of the polynomial \param[in] rad [optional] is the desired radius. If
477 * rad <= 0, then the maximum radius based on dimensions of m is used.
478 *
479 * \tparam arrayT is an Eigen-like array of real floating type
480 * \tparam calcRealT is a real floating type used for internal calculations, should be at least double
481 */
482template <typename arrayT, typename calcRealT>
483int zernike( arrayT &arr, int j, typename arrayT::Scalar rad = -1 )
484{
485 typename arrayT::Scalar xcen = 0.5 * ( arr.rows() - 1.0 );
486 typename arrayT::Scalar ycen = 0.5 * ( arr.cols() - 1.0 );
487
488 return zernike<arrayT, calcRealT>( arr, j, xcen, ycen, rad );
489}
490
491/// Fill in an Eigencube-like array with Zernike polynomials in Noll order
492/** The cube is pre-allocated to set the image size and the number of modes.
493 *
494 * \returns 0 on success
495 * \returns -1 on error
496 *
497 * \tparam cubeT is an Eigencube-like array with real floating point type
498 * \tparam calcRealT is a real floating type used for internal calculations, should be at least double
499 */
500template <typename cubeT, typename calcRealT>
502 cubeT &cube, ///< [in.out] the pre-allocated cube which will be filled with the Zernike basis
503 typename cubeT::Scalar rad =
504 -1, ///< [in] [optional] the radius of the aperture. If -1 then the full image size is used.
505 int minj = 2 ///< [in] [optional] the minimum j value to include. The default is j=2, which skips piston (j=1).
506)
507{
508 typedef typename cubeT::imageT arrayT;
509
510 typename cubeT::imageT im;
511
512 im.resize( cube.rows(), cube.cols() );
513
514 int rv;
515 for( int i = 0; i < cube.planes(); ++i )
516 {
517 rv = zernike<arrayT, calcRealT>( im, minj + i, rad );
518
519 if( rv < 0 )
520 {
521 return rv;
522 }
523 cube.image( i ) = im;
524 }
525
526 return 0;
527}
528
529/// Calculate the square-normed Fourier transform of a Zernike polynomial at position (k,phi)
530/** Implements Equation (8) of Noll (1976) \cite noll_1976.
531 *
532 * \todo need a more robust jinc_n function for n > 1
533 *
534 * \test Scenario: testing zernikeQNorm \ref tests_sigproc_zernike_zernikeQNorm "[test doc]"
535 *
536 * \returns the value of |Q(k,phi)|^2
537 *
538 * \tparam realT is the floating point type used for arithmetic
539 */
540template <typename realT>
541std::complex<realT> zernikeQ( realT k, /**< [in] the radial coordinate of normalized spatial frequency. This is in the
542 * \cite noll_1976 convention of cycles-per-radius.
543 */
544 realT phi, ///< [in] the azimuthal coordinate of normalized spatial frequency
545 int n, ///< [in] the Zernike polynomial n
546 int m ///< [in] the Zernike polynomial m
547)
548{
549
550 std::complex<realT> Q;
551
552 // sloppy implementation of jinc_n for k ~ 0
553 if( k < 1e-12 )
554 {
555 if( n == 0 )
556 Q = 1.0;
557 else
558 Q = 0.0;
559 }
560 else
561 {
562 Q = math::func::bessel_j( n + 1, math::two_pi<realT>() * k ) / ( math::pi<realT>() * k );
563 }
564
565 Q = sqrt( n + 1 ) * Q;
566
567 if( m > 0 ) // Even j (see Noll 1976)
568 {
569 Q = Q * pow( -1, 0.5 * ( n - m ) ) * pow( std::complex<realT>( { 0, 1 } ), m ) * sqrt( 2 ) * cos( m * phi );
570 }
571 else if( m < 0 ) // Odd j (see Noll 1976) , but m can't really be neg
572 {
573 Q = Q * pow( -1, 0.5 * ( n + m ) ) * pow( std::complex<realT>( { 0, 1 } ), -m ) * sqrt( 2 ) * sin( -m * phi );
574 }
575 else
576 {
577 Q = Q * pow( -1, 0.5 * n );
578 }
579
580 return Q;
581}
582
583/// Calculate the square-normed Fourier transform of a Zernike polynomial at position (k,phi)
584/** Implements Equation (8) of Noll (1976) \cite noll_1976.
585 *
586 * \todo need a more robust jinc_n function for n > 1
587 *
588 * \test Scenario: testing zernikeQNorm \ref tests_sigproc_zernike_zernikeQNorm "[test doc]"
589 *
590 * \returns the value of |Q(k,phi)|^2
591 *
592 * \tparam realT is the floating point type used for arithmetic
593 */
594template <typename realT>
595realT zernikeQNorm( realT k, ///< [in] the radial coordinate of normalized spatial frequency. This is in the \cite
596 ///< noll_1976 convention of cycles-per-radius.
597 realT phi, ///< [in] the azimuthal coordinate of normalized spatial frequency
598 int n, ///< [in] the Zernike polynomial n
599 int m ///< [in] the Zernike polynomial m
600)
601{
602
603 realT B;
604
605 // sloppy implementation of jinc_n for k ~ 0
606 if( k < 0.00001 )
607 {
608 if( n == 0 )
609 B = 1.0;
610 else
611 B = 0.0;
612 }
613 else
614 {
615 B = math::func::bessel_j( n + 1, math::two_pi<realT>() * k ) / ( math::pi<realT>() * k );
616 }
617
618 realT Q2 = ( n + 1 ) * ( B * B );
619
620 if( m > 0 ) // Even j (see Noll 1976)
621 {
622 Q2 = 2 * Q2 * pow( cos( m * phi ), 2 );
623 }
624 else if( m < 0 ) // Odd j (see Noll 1976)
625 {
626 Q2 = 2 * Q2 * pow( sin( -m * phi ), 2 );
627 }
628
629 return Q2;
630}
631
632extern template float zernikeQNorm<float>( float k, float phi, int n, int m );
633
634extern template double zernikeQNorm<double>( double k, double phi, int n, int m );
635
636extern template long double zernikeQNorm<long double>( long double k, long double phi, int n, int m );
637
638#ifdef HASQUAD
639extern template __float128 zernikeQNorm<__float128>( __float128 k, __float128 phi, int n, int m );
640#endif
641
642/// Calculate the square-normed Fourier transform of a Zernike polynomial at position (k,phi)
643/** Implements Equation (8) of Noll (1976) \cite noll_1976.
644 *
645 * \returns the value of |Q(k,phi)|^2
646 *
647 * \tparam realT is the floating point type used for arithmetic
648 *
649 */
650template <typename realT>
651realT zernikeQNorm( realT k, ///< [in] the radial coordinate of normalized spatial frequency. This is in the \cite
652 ///< noll_1976 convention of cycles-per-radius.
653 realT phi, ///< [in] the azimuthal coordinate of normalized spatial frequency
654 int j ///< [in] the Zernike polynomial index j (Noll convention)
655)
656{
657 int n, m;
658
659 noll_nm( n, m, j );
660
661 return zernikeQNorm( k, phi, n, m );
662}
663
664/// Fill in an Eigen-like array with the square-normed Fourier transform of a Zernike polynomial
665/** The array is filled in with the values of |Q(k,phi)|^2 according to Equation (8) of Noll (1976) \cite noll_1976.
666 *
667 * \test Scenario: testing zernikeQNorm \ref tests_sigproc_zernike_zernikeQNorm "[test doc]"
668 *
669 * \returns 0 on success
670 * \returns -1 on error
671 *
672 * \tparam arrayT is the Eigen-like array type. Arithmetic will be done in arrayT::Scalar.
673 */
674template <typename arrayT>
676 arrayT &arr, ///< [out] the allocated array. The rows() and cols() members are used to size the transform.
677 arrayT &k, ///< [in] the normalized spatial frequency magnitude at each pixel. This is in the \cite noll_1976
678 ///< convention of cycles-per-radius.
679 arrayT &phi, ///< [in] the spatial frequency angle at each pixel
680 int j ///< [in] the polynomial index in the Noll convention \cite noll_1976
681)
682{
683 if( arr.rows() != k.rows() || arr.cols() != k.cols() )
684 {
685 mxError( "zernikeQNorm", MXE_INVALIDARG, "output array and input k are not the same size" );
686 return -1;
687 }
688
689 if( arr.rows() != phi.rows() || arr.cols() != phi.cols() )
690 {
691 mxError( "zernikeQNorm", MXE_INVALIDARG, "output array and input phi are not the same size" );
692 return -1;
693 }
694
695 int n, m;
696 if( noll_nm( n, m, j ) < 0 )
697 return -1; // noll_nm will explain error
698
699 for( size_t i = 0; i < arr.rows(); ++i )
700 {
701 for( size_t j = 0; j < arr.cols(); ++j )
702 {
703 arr( i, j ) = zernikeQNorm( k( i, j ), phi( i, j ), n, m );
704 }
705 }
706 return 0;
707}
708
709/// Calculate the spatial power spectrum of Piston
710template <typename realT>
711realT zernikePPiston( const realT &kD /**< [in] Spatial frequency in diameter units, i.e. cycles per aperture.*/ )
712{
713 return 4 * pow( math::func::jinc( math::pi<realT>() * kD ), 2 );
714}
715
716/// Calculate the spatial power spectrum of Tip \& Tilt
717template <typename realT>
718realT zernikePTipTilt( const realT &kD /**< [in] Spatial frequency in diameter units, i.e. cycles per aperture.*/ )
719{
720 return 16 * pow( math::func::jincN( 2, math::pi<realT>() * kD ), 2 );
721}
722
723/// Calculate the spatial power spectrum of Defocus
724template <typename realT>
725realT zernikePDefocus( const realT &kD /**< [in] Spatial frequency in diameter units, i.e. cycles per aperture.*/ )
726{
727 return 12 * pow( math::func::jincN( 3, math::pi<realT>() * kD ), 2 );
728}
729
730/// Calculate the spatial power spectrum of Astigmatism
731template <typename realT>
732realT zernikePAstig( const realT &kD /**< [in] Spatial frequency in diameter units, i.e. cycles per aperture.*/ )
733{
734 return 24 * pow( math::func::jincN( 3, math::pi<realT>() * kD ), 2 );
735}
736
737/// Calculate the spatial power spectrum of Coma
738template <typename realT>
739realT zernikePComa( const realT &kD /**< [in] Spatial frequency in diameter units, i.e. cycles per aperture.*/ )
740{
741 return 32 * pow( math::func::jincN( 4, math::pi<realT>() * kD ), 2 );
742}
743
744/// Calculate the spatial power spectrum of Trefoil
745template <typename realT>
746realT zernikePTrefoil( const realT &kD /**< [in] Spatial frequency in diameter units, i.e. cycles per aperture.*/ )
747{
748 return 32 * pow( math::func::jincN( 4, math::pi<realT>() * kD ), 2 );
749}
750
751///@} signal_processing
752
753} // namespace sigproc
754} // namespace mx
755
756#endif // math_zernike_hpp
T2 bessel_j(T1 v, T2 x)
Bessel Functions of the First Kind.
Definition bessel.hpp:49
T2 jincN(const T1 &v, const T2 &x)
The JincN function.
Definition jinc.hpp:112
T jinc(const T &x)
The Jinc function.
Definition jinc.hpp:61
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
int noll_j(unsigned n, int m)
Get the Noll index j corresponding to Zernike coefficients n,m.
realT zernikeR(realT rho, int n, int m, std::vector< calcRealT > &c)
Calculate the value of a Zernike radial polynomial at a given separation.
Definition zernike.hpp:157
realT zernikePPiston(const realT &kD)
Calculate the spatial power spectrum of Piston.
Definition zernike.hpp:711
realT zernikePDefocus(const realT &kD)
Calculate the spatial power spectrum of Defocus.
Definition zernike.hpp:725
realT zernikePTrefoil(const realT &kD)
Calculate the spatial power spectrum of Trefoil.
Definition zernike.hpp:746
realT zernike(realT rho, realT phi, int n, int m, std::vector< calcRealT > &c)
Calculate the value of a Zernike radial polynomial at a given radius and angle.
Definition zernike.hpp:254
int nZernRadOrd(unsigned n)
Get the number of Zernikes up to and including a radial order.
realT zernikePTipTilt(const realT &kD)
Calculate the spatial power spectrum of Tip & Tilt.
Definition zernike.hpp:718
int noll_nm(int &n, int &m, int j)
Get the Zernike coefficients n,m corrresponding the Noll index j.
Definition zernike.cpp:35
realT zernikeQNorm(realT k, realT phi, int n, int m)
Calculate the square-normed Fourier transform of a Zernike polynomial at position (k,...
Definition zernike.hpp:595
std::complex< realT > zernikeQ(realT k, realT phi, int n, int m)
Calculate the square-normed Fourier transform of a Zernike polynomial at position (k,...
Definition zernike.hpp:541
realT zernikePAstig(const realT &kD)
Calculate the spatial power spectrum of Astigmatism.
Definition zernike.hpp:732
realT zernikePComa(const realT &kD)
Calculate the spatial power spectrum of Coma.
Definition zernike.hpp:739
int zernikeRCoeffs(std::vector< realT > &c, int n, int m)
Calculate the coefficients of a Zernike radial polynomial.
Definition zernike.hpp:101
int zernikeBasis(cubeT &cube, typename cubeT::Scalar rad=-1, int minj=2)
Fill in an Eigencube-like array with Zernike polynomials in Noll order.
Definition zernike.hpp:501
The mxlib c++ namespace.
Definition mxError.hpp:106