mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
clAOLinearPredictor.hpp
Go to the documentation of this file.
1/** \file clAOLinearPredictor.hpp
2 * \author Jared R. Males (jaredmales@gmail.com)
3 * \brief Provides a class to manage closed loop gain linear predictor determination.
4 * \ingroup mxAO_files
5 *
6 */
7
8#ifndef clAOLinearPredictor_hpp
9#define clAOLinearPredictor_hpp
10
11#include <vector>
12
13#include "../../math/geo.hpp"
14
15#include "../../sigproc/psdUtils.hpp"
16
17#include "../../sigproc/autocorrelation.hpp"
18#include "../../sigproc/linearPredictor.hpp"
19
20#include "clGainOpt.hpp"
21
22namespace mx
23{
24namespace AO
25{
26namespace analysis
27{
28
29/// Class to manage the calculation of linear predictor coefficients for a closed-loop AO system.
30/**
31 * \tparam _realT the real floating point type in which to do all arithmetic.
32 *
33 * \ingroup mxAOAnalytic
34 */
35template <typename _realT>
37{
38 typedef _realT realT;
39
40 std::vector<realT> PSDtn;
41
42 std::vector<realT> psd2s;
43
44 std::vector<realT> ac;
45
47
49
50 realT m_min_var0{ 0 };
51 realT m_min_sc0{ 10 };
52 realT m_precision0{ 2 };
53 realT m_max_sc0{ 100 };
54 realT m_dPrecision{ 3 };
55
56 realT m_gmax_lp{ 5 }; ///< The maximum allowable gain for LP.
57
58 // Stopping conditions:
59 realT m_minPrecision{ 0.001 };
60 int m_maxIts{ 100 };
61
62 int extrap;
63
64 clAOLinearPredictor()
65 {
66 extrap = 0;
67 }
68
69 /// Calculate the LP coefficients for a turbulence PSD and a noise PSD.
70 /** This combines the two PSDs, augments to two-sided, and calls the linearPredictor.calcCoefficients method.
71 *
72 * A regularization constant can be added to the PSD as well.
73 *
74 */
75 int calcCoefficients( std::vector<realT> &PSDt, ///< [in] the turbulence PSD
76 std::vector<realT> &PSDn, ///< [in] the WFS noise PSD
77 realT PSDreg, ///< [in] the regularizing constant. Set to 0 to not use.
78 int Nc, ///< [in] the number of LP coefficients.
79 realT condition = 0 )
80 {
81 PSDtn.resize( PSDt.size() );
82
83 for( size_t i = 0; i < PSDt.size(); ++i )
84 {
85 PSDtn[i] = PSDt[i] + PSDn[i] + PSDreg;
86 }
87
88 sigproc::augment1SidedPSD( psd2s, PSDtn, 1 );
89
90 ac.resize( psd2s.size() );
91
92 acpsd( ac, psd2s );
93
94 return lp.calcCoefficients( ac, Nc, condition, extrap );
95 }
96
97 /// Worker function for regularizing the PSD for coefficient calculation.
98 /**
99 * \tparam printout if true then the results are printed to stdout as they are calculated.
100 *
101 * On first call (min_var = 0):
102 * loop over scale factors from min_sc to max_sc (<=) in steps of precision.
103 *
104 * On subsequent calls, when min_var and min_sc are passed back in
105 * loop over scale factors from min_sc-precision to max_sc in steps of
106 */
107 template <bool printout>
108 int _regularizeCoefficients( realT &min_var, ///< [in.out] the minimum variance found. Set to 0 on initial call
109 realT &min_sc, ///< [in.out] the scale factor at the minimum variance.
110 realT precision, ///< [in] the step-size for the scale factor
111 realT max_sc, ///< [in] the maximum scale factor to test
112 clGainOpt<realT> &go_lp, ///< [in] the gain optimization object
113 std::vector<realT> &PSDt, ///< [in] the turbulence PSD
114 std::vector<realT> &PSDn, ///< [in] the WFS noise PSD
115 int Nc ///< [in] the number of coefficients
116 )
117 {
118 realT gmax_lp;
119 realT gopt_lp;
120 realT var_lp;
121
122 realT sc0;
123
124 // realT last_var;
125
126 // min_var == 0 indicates first call
127 if( min_var == 0 )
128 {
129 sc0 = min_sc;
130 min_var = std::numeric_limits<realT>::max();
131 // last_var = std::numeric_limits<realT>::max();
132 }
133 else
134 {
135 sc0 = min_sc - precision * m_dPrecision;
136 // sc0 = min_sc;
137 // last_var = min_var;
138 }
139
140 // auto it = std::max_element(std::begin(PSDt), std::end(PSDt));
141 realT psdReg = PSDt[0]; //*it/10;
142
143 // Test from sc0 to max_sc in steps of precision
144 for( realT sc = sc0; sc <= max_sc; sc += precision )
145 {
146 if( calcCoefficients( PSDt, PSDn, psdReg * pow( 10, -sc / 10 ), Nc ) < 0 )
147 return -1;
148
149 go_lp.a( lp.m_c );
150 go_lp.b( lp.m_c );
151
152 realT ll = 0, ul = 0;
153 gmax_lp = go_lp.maxStableGain( ll, ul );
154 if( gmax_lp > m_gmax_lp )
155 {
156 gmax_lp = m_gmax_lp;
157 }
158
159 gopt_lp = go_lp.optGainOpenLoop( var_lp, PSDt, PSDn, gmax_lp, false );
160
161 if( printout )
162 {
163 std::cout << -( sc ) / 10 << " " << gmax_lp << " " << gopt_lp << " " << var_lp << "\n";
164 }
165
166 if( var_lp < min_var )
167 {
168 min_var = var_lp;
169 min_sc = sc;
170 }
171
172 // A jump by a factor of 10 indicates the wall
173 if( var_lp > 10 * min_var )
174 return 0;
175
176 // last_var = var_lp;
177 }
178
179 return -1;
180 }
181
182 /// Regularize the PSD and calculate the associated LP coefficients.
183 /** The PSD is regularized by adding a constant to it. This constant is found by minimizing the variance of the
184 * residual PSD.
185 *
186 * \tparam printout if true then the results are printed to stdout as they are calculated.
187 */
188 template <bool printout = false>
189 int regularizeCoefficients( realT &gmax_lp, ///< [out] the maximum gain calculated for the regularized PSD
190 realT &gopt_lp, ///< [out] the optimum gain calculated for the regularized PSD
191 realT &var_lp, ///< [out] the variance at the optimum gain.
192 clGainOpt<realT> &go_lp, ///< [in] the gain optimization object
193 std::vector<realT> &PSDt, ///< [in] the turbulence PSD
194 std::vector<realT> &PSDn, ///< [in] the WFS noise PSD
195 int Nc ///< [in] the number of coefficients
196 )
197 {
198
199 realT min_var = m_min_var0;
200 realT min_sc = m_min_sc0;
201 realT precision = m_precision0;
202 realT max_sc = m_max_sc0;
203
204 int its = 0;
205 while( precision > m_minPrecision && its < m_maxIts )
206 {
207 _regularizeCoefficients<printout>( min_var, min_sc, precision, max_sc, go_lp, PSDt, PSDn, Nc );
208
209 if( min_sc == max_sc )
210 {
211 if( its == 0 )
212 {
213 min_sc -= precision;
214 max_sc = 200;
215 }
216 else
217 {
218 // std::cerr << "Error in regularizeCoefficients.\n";
219 // return -1;
220 break;
221 }
222 }
223 else
224 {
225 max_sc = min_sc + precision;
226 precision /= m_dPrecision;
227 }
228
229 ++its;
230 }
231
232 // Now record final values
233 if( calcCoefficients( PSDt, PSDn, PSDt[0] * pow( 10, -min_sc / 10 ), Nc ) < 0 )
234 return -1;
235
236 go_lp.a( lp.m_c );
237 // go_lp.a(std::vector<realT>({1}));
238 go_lp.b( lp.m_c );
239 // go_lp.b(std::vector<realT>({lp._c(0,0)}));
240
241 realT ll = 0, ul = 0;
242 gmax_lp = go_lp.maxStableGain( ll, ul );
243 gopt_lp = go_lp.optGainOpenLoop( var_lp, PSDt, PSDn, gmax_lp, false );
244
245 return 0;
246 }
247
248 /// Regularize the PSD and calculate the associated LP coefficients.
249 /** The PSD is regularized by adding a constant to it. This constant is found by minimizing the variance of the
250 * residual PSD.
251 *
252 * \tparam printout if true then the results are printed to stdout as they are calculated.
253 */
254 template <bool printout = false>
255 int optimizeNc( realT &gmax_lp, ///< [out] the maximum gain calculated for the regularized PSD
256 realT &gopt_lp, ///< [out] the optimum gain calculated for the regularized PSD
257 int &Nc,
258 realT &var_lp, ///< [out] the variance at the optimum gain.
259 clGainOpt<realT> &go_lp, ///< [in] the gain optimization object
260 std::vector<realT> &PSDt, ///< [in] the turbulence PSD
261 std::vector<realT> &PSDn, ///< [in] the WFS noise PSD
262 int minNc, ///< [in] the number of coefficients
263 int maxNc )
264 {
265 realT minVar = std::numeric_limits<realT>::max();
266
267 for( int n = minNc; n <= maxNc; ++n )
268 {
269 realT _gmax_lp;
270 realT _gopt_lp;
271 realT _var_lp;
272 regularizeCoefficients<printout>( _gmax_lp, _gopt_lp, _var_lp, go_lp, PSDt, PSDn, n );
273
274 if( _var_lp < minVar )
275 {
276 gmax_lp = _gmax_lp;
277 gopt_lp = _gopt_lp;
278 var_lp = _var_lp;
279 Nc = n;
280
281 minVar = var_lp;
282 }
283 }
284
285 return 0;
286 }
287};
288
289} // namespace analysis
290} // namespace AO
291} // namespace mx
292
293#endif // clAOLinearPredictor_hpp
Provides a class to manage closed loop gain optimization.
void augment1SidedPSD(vectorTout &psdTwoSided, vectorTin &psdOneSided, bool addZeroFreq=false, typename vectorTin::value_type scale=0.5)
Augment a 1-sided PSD to standard 2-sided FFT form.
Definition psdUtils.hpp:817
The mxlib c++ namespace.
Definition mxError.hpp:106
Class to manage the calculation of linear predictor coefficients for a closed-loop AO system.
realT m_gmax_lp
The maximum allowable gain for LP.
int calcCoefficients(std::vector< realT > &PSDt, std::vector< realT > &PSDn, realT PSDreg, int Nc, realT condition=0)
Calculate the LP coefficients for a turbulence PSD and a noise PSD.
int _regularizeCoefficients(realT &min_var, realT &min_sc, realT precision, realT max_sc, clGainOpt< realT > &go_lp, std::vector< realT > &PSDt, std::vector< realT > &PSDn, int Nc)
Worker function for regularizing the PSD for coefficient calculation.
int regularizeCoefficients(realT &gmax_lp, realT &gopt_lp, realT &var_lp, clGainOpt< realT > &go_lp, std::vector< realT > &PSDt, std::vector< realT > &PSDn, int Nc)
Regularize the PSD and calculate the associated LP coefficients.
int optimizeNc(realT &gmax_lp, realT &gopt_lp, int &Nc, realT &var_lp, clGainOpt< realT > &go_lp, std::vector< realT > &PSDt, std::vector< realT > &PSDn, int minNc, int maxNc)
Regularize the PSD and calculate the associated LP coefficients.
Functor for calculating the autocorrelation given a PSD.
A class to support linear prediction.
int calcCoefficients(const std::vector< realT > &ac, size_t Nc, size_t Npred=1, realT condition=0)
Calculate the LP coefficients given an autocorrelation.