mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
fourierCovariance.hpp
Go to the documentation of this file.
1/** \file fourierCovariance.hpp
2 * \author Jared R. Males (jaredmales@gmail.com)
3 * \brief Calculation of the modal covariance in the Fourier basis.
4 * \ingroup mxAO_files
5 *
6 */
7
8#ifndef fourierCovariance_hpp
9#define fourierCovariance_hpp
10
11#include <gsl/gsl_integration.h>
12#include <gsl/gsl_errno.h>
13
14#include "../../math/constants.hpp"
15#include "../../math/func/jinc.hpp"
16#include "../../sigproc/fourierModes.hpp"
17#include "../../ioutils/fits/fitsFile.hpp"
18#include "../../improc/eigenImage.hpp"
19#include "../../improc/eigenCube.hpp"
20#include "../../mxlib_uncomp_version.h"
21#include "../../ipc/ompLoopWatcher.hpp"
22#include "../../sys/timeUtils.hpp"
23#include "../../math/eigenLapack.hpp"
24
25#include "../../math/func/airyPattern.hpp"
26
27#include "aoAtmosphere.hpp"
28#include "aoPSDs.hpp"
29#include "aoSystem.hpp"
30#include "varmapToImage.hpp"
31
32namespace mx
33{
34namespace AO
35{
36namespace analysis
37{
38
39#ifndef WSZ
40
41/** \def WSZ
42 * \brief The size of the gsl_integration workspaces.
43 */
44#define WSZ 100000
45
46#endif
47
48// Forward Declaration
49template <typename realT, typename aosysT>
50struct fourierCovariance;
51
52/// Worker for the azimuthal integral (in phi) for the basic Fourier mode covariance.
53/**
54 * \param phi the angle at which to evaluate the integrand
55 * \param params a pointer to a object of type fourierCovariance<realT, aosyT>
56 *
57 * \tparam realT a floating point type used for all calculations
58 * \tparam aosysT the type of the AO system structure
59 *
60 * \ingroup mxAOAnalytic
61 */
62template <typename realT, typename aosysT>
63realT phiInt_basic( realT phi, void *params )
64{
65
67
68 realT D = Pp->aosys->D();
69
70 int p = Pp->p;
71 realT m = Pp->m;
72 realT n = Pp->n;
73
74 int pp = Pp->pp;
75 realT mp = Pp->mp;
76 realT np = Pp->np;
77
78 realT k = Pp->k;
79
80 realT cosp = cos( phi );
81 realT sinp = sin( phi );
82
83 /*** no prime ***/
84 realT kmn_p, kmn_m;
85 realT Ji_mn_p, Ji_mn_m;
86 realT Q_mn; //, Qs_mn;
87
88 kmn_p = sqrt( pow( k * cosp + m / D, 2 ) + pow( k * sinp + n / D, 2 ) );
89 kmn_m = sqrt( pow( k * cosp - m / D, 2 ) + pow( k * sinp - n / D, 2 ) );
90
91 Ji_mn_p = math::func::jinc( math::pi<realT>() * D * kmn_p );
92 Ji_mn_m = math::func::jinc( math::pi<realT>() * D * kmn_m );
93
94 realT N = 1. / sqrt( 0.5 + p * math::func::jinc( math::two_pi<realT>() * sqrt( m * m + n * n ) ) );
95
96 Q_mn = N * ( Ji_mn_p + p * Ji_mn_m );
97
98 /*** primed ***/
99 realT kmpnp_p, kmpnp_m;
100 realT Ji_mpnp_p, Ji_mpnp_m;
101 realT Q_mpnp; //, Qs_mpnp;
102
103 kmpnp_p = sqrt( pow( k * cosp + mp / D, 2 ) + pow( k * sinp + np / D, 2 ) );
104 kmpnp_m = sqrt( pow( k * cosp - mp / D, 2 ) + pow( k * sinp - np / D, 2 ) );
105
106 Ji_mpnp_p = math::func::jinc( math::pi<realT>() * D * kmpnp_p );
107 Ji_mpnp_m = math::func::jinc( math::pi<realT>() * D * kmpnp_m );
108
109 realT Np = 1. / sqrt( 0.5 + pp * math::func::jinc( math::two_pi<realT>() * sqrt( mp * mp + np * np ) ) );
110
111 Q_mpnp = Np * ( Ji_mpnp_p + pp * Ji_mpnp_m );
112
113 realT P = Pp->aosys->psd( Pp->aosys->atm, 0, k, 1.0 ); // vonKarmanPSD(k, D, L0, Pp->subPiston, Pp->subTipTilt);
114
115 return P * k * ( Q_mn * Q_mpnp );
116}
117
118/// Worker for the azimuthal integral (in phi) for the modified Fourier mode covariance.
119/**
120 * \param phi the angle at which to evaluate the integrand
121 * \param params a pointer to a object of type fourierCovariance<realT, aosyT>
122 *
123 * \tparam realT a floating point type used for all calculations
124 * \tparam aosysT the type of the AO system structure
125 */
126template <typename realT, typename aosysT>
127realT phiInt_mod( realT phi, void *params )
128{
129
131
132 // realT L0 = Pp->aosys->atm.L_0();
133 realT D = Pp->aosys->D();
134
135 int p = Pp->p;
136 realT m = Pp->m;
137 realT n = Pp->n;
138
139 int pp = Pp->pp;
140 realT mp = Pp->mp;
141 realT np = Pp->np;
142
143 realT k = Pp->k;
144
145 realT mnCon = Pp->mnCon;
146
147 realT cosp = cos( phi );
148 realT sinp = sin( phi );
149
150 /*** no prime ***/
151 realT kmn_p, kmn_m;
152 realT Ji_mn_p, Ji_mn_m;
153
154 kmn_p = sqrt( pow( k * cosp + m / D, 2 ) + pow( k * sinp + n / D, 2 ) );
155 kmn_m = sqrt( pow( k * cosp - m / D, 2 ) + pow( k * sinp - n / D, 2 ) );
156
157 Ji_mn_p = math::func::jinc( math::pi<realT>() * D * kmn_p );
158 Ji_mn_m = math::func::jinc( math::pi<realT>() * D * kmn_m );
159
160 /*** primed ***/
161 realT kmpnp_p, kmpnp_m;
162 realT Ji_mpnp_p, Ji_mpnp_m;
163
164 kmpnp_p = sqrt( pow( k * cosp + mp / D, 2 ) + pow( k * sinp + np / D, 2 ) );
165 kmpnp_m = sqrt( pow( k * cosp - mp / D, 2 ) + pow( k * sinp - np / D, 2 ) );
166
167 Ji_mpnp_p = math::func::jinc( math::pi<realT>() * D * kmpnp_p );
168 Ji_mpnp_m = math::func::jinc( math::pi<realT>() * D * kmpnp_m );
169
170 realT QQ;
171
172 if( p == pp )
173 {
174 QQ = 2.0 * ( Ji_mn_p * Ji_mpnp_p + Ji_mn_m * Ji_mpnp_m );
175 }
176 else
177 {
178 QQ = 2.0 * ( Ji_mn_p * Ji_mpnp_m + Ji_mn_m * Ji_mpnp_p );
179 }
180
181 realT P = Pp->aosys->psd(
182 Pp->aosys->atm, 0, k, 1.0 ); // psd(Pp->aosys->atm, k, Pp->aosys->lam_sci(), Pp->aosys->lam_wfs(), 1.0);
183
184 /*if(mnCon > 0 )
185 {
186 if( k*D <= mnCon )
187 {
188 P *= pow(math::two_pi<realT>()*Pp->aosys->atm.v_wind()* k *
189 (Pp->aosys->minTauWFS(0)+Pp->aosys->deltaTau()),2);
190 }
191 }*/
192
193 return P * k * QQ;
194}
195
196/// Worker function for the radial integral in the covariance calculation
197/**
198 * \param k the spatial frequency at which to evaluate the integrand
199 * \param params a pointer to a object of type fourierCovariance<realT, aosyT>
200 *
201 * \tparam realT a floating point type used for all calculations. As of Nov 2016 must be double due to gsl_integration.
202 * \tparam aosysT the type of the AO system structure
203 */
204template <typename realT, typename aosysT>
205realT kInt( realT k, void *params )
206{
208
209 realT result, error;
210
211 gsl_function func;
212
213 // Here choose between basic and modified Fourier modes.
214 if( Pp->useBasic )
215 {
216 func.function = &phiInt_basic<realT, aosysT>;
217 }
218 else
219 {
220 func.function = &phiInt_mod<realT, aosysT>;
221 }
222 func.params = Pp;
223
224 Pp->k = k;
225
226 // Tolerances of 1e-4 seem to be all we can ask for
227 gsl_integration_qag(
228 &func, 0., math::two_pi<double>(), 1e-10, 1e-4, WSZ, GSL_INTEG_GAUSS21, Pp->phi_w, &result, &error );
229
230 return result;
231}
232
233/// Structure to manage the Fourier mode covariance calculation, passed to integration functions
234/**
235 * \tparam realT a floating point type used for all calculations. As of Nov 2016 must be double due to gsl_integration.
236 * \tparam aosysT the type of the AO system structure
237 */
238template <typename realT, typename aosysT>
240{
241 /// Pointer to an AO system, which contains the relevant spatial PSD of turbulence.
242 aosysT *aosys{ nullptr };
243
244 /// Flag controlling use of basic or modified Fourier modes. If true, the basic sin/cos modes are used. If false
245 /// (default), the modified modes are u sed.
246 bool useBasic{ false };
247
248 /// p-index of the unprimed mode. +/-1 for modified modes. If basic, then +1==>cosine, -1==>sine.
249 int p;
250
251 /// The m-index of the unprimed mode, corresponding to the \f$ k_u = m/D \f$ component of spatial frequency.
252 realT m;
253
254 /// The n-indexof the unprimed mode, corresponding to the \f$ k_v = n/D \f$ component of spatial frequency.
255 realT n;
256
257 /// p-index of the primed mode. +/-1 for modified modes. If basic, then +1==>cosine, -1==>sine.
258 int pp;
259
260 /// The m-index of the primed mode, corresponding to the \f$ k_u = m/D \f$ component of spatial frequency.
261 realT mp;
262
263 /// The n-indexof the primed mode, corresponding to the \f$ k_v = n/D \f$ component of spatial frequency.
264 realT np;
265
266 /// Spatial frequency being calculated, passed for use in the integrand worker functions.
267 realT k;
268
269 /// The maximum controlled value of spatial frequency (k*D). If < 0 then not controlled.
270 realT mnCon{ 0 };
271
272 /// Absolute tolerance for the radial integral. Default is 1e-7.
273 realT absTol{ 1e-7 };
274
275 /// Relative tolerance for the radial integral. Default is 1e-7.
276 realT relTol{ 1e-7 };
277
278 /// Working memory for the azimuthal integral.
279 gsl_integration_workspace *phi_w;
280
281 /// Working memory for the radial integral.
282 gsl_integration_workspace *k_w;
283
284 /// Constructor
286 {
287 phi_w = gsl_integration_workspace_alloc( WSZ );
288 k_w = gsl_integration_workspace_alloc( WSZ );
289 }
290
291 /// Destructor
293 {
294 gsl_integration_workspace_free( phi_w );
295 gsl_integration_workspace_free( k_w );
296 }
297
298 /// Calculate the covariance between the two modes.
299 /** \todo document me
300 * \todo handle gsl errors
301 */
302 realT getVariance( realT &error )
303 {
304 realT result;
305
306 gsl_function func;
307 func.function = &kInt<realT, aosysT>;
308 func.params = this;
309
310 gsl_set_error_handler_off();
311
312 int ec = gsl_integration_qagiu( &func, 0, absTol, relTol, WSZ, k_w, &result, &error );
313
314 // Finally, convert to square sampling.
315 return result;
316 }
317};
318
319/// Calculate a vector of Fourier mode variances.
320template <typename realT, typename aosysT>
321int fourierVarVec( const std::string &fname, int N, aosysT &aosys, realT absTol, realT relTol, bool modifed = true )
322{
323
324 std::vector<realT> var( N, 0 );
325
326 ipc::ompLoopWatcher<> watcher( N, std::cerr );
327
328 realT mnCon = 0;
329 if( aosys.d_min( 0 ) > 0 )
330 {
331 mnCon = floor( aosys.D() / aosys.d_min( 0 ) / 2.0 );
332 }
333
334#pragma omp parallel
335 {
337 Pp.absTol = absTol;
338 Pp.relTol = relTol;
339 Pp.aosys = &aosys;
340
341 Pp.mnCon = mnCon;
342
343 realT result, error;
344
345#pragma omp for schedule( dynamic, 5 )
346 for( int i = 0; i < N; ++i )
347 {
348 Pp.p = +1;
349 Pp.m = i + 1;
350 Pp.n = 0;
351
352 Pp.pp = +1;
353 Pp.mp = i + 1;
354 Pp.np = 0;
355
356 result = Pp.getVariance( error );
357
358 var[i] = result;
359
360 watcher.incrementAndOutputStatus();
361 }
362 }
363
364 std::ofstream fout;
365 fout.open( fname );
366
367 realT D = aosys.D();
368 realT r_0 = aosys.atm.r_0();
369 realT tot = 1.0299 * pow( D / r_0, 5. / 3. );
370
371 realT sum = 0;
372
373 std::cout << 0 << " " << 0 << " " << 0 << " " << tot << "\n";
374 for( int i = 0; i < N; ++i )
375 {
376 realT k = ( i + 1 ) / D;
377
378 realT P = aosys.psd( aosys.atm, 0, k, 1.0 ); // aosys.lam_sci(), 0, aosys.lam_wfs(), 1.0);
379
380 if( mnCon > 0 )
381 {
382 if( k * D < mnCon )
383 {
384 P *= pow( math::two_pi<realT>() * aosys.atm.v_wind() * k * ( aosys.minTauWFS( 0 ) + aosys.deltaTau() ),
385 2 );
386 }
387 }
388
389 sum += var[i];
390 fout << i + 1 << " " << var[i] << " " << P / pow( D, 2 ) << " " << tot - sum << "\n";
391 }
392
393 fout.close();
394
395 return 0;
396}
397
398/// Calculate a map of Fourier variances by convolution with the PSD
399/** Uses the Airy pattern for the circularly unobstructed aperture.
400 *
401 * \returns 0 on success
402 * \returns -1 on error
403 */
404template <typename realT, typename aosysT>
405int fourierPSDMap( improc::eigenImage<realT> &var, ///< [out] The variance estimated by convolution with the PSD
406 improc::eigenImage<realT> &psd, ///< [out] the PSD map
407 int N, ///< [in] the number of components to analyze
408 int overSample,
409 aosysT &aosys ///< [in[ the AO system defining the PSD characteristics.
410)
411{
412 N *= overSample;
413 psd.resize( 2 * N + 1, 2 * N + 1 );
414
415 realT mnCon = 0;
416 if( aosys.d_min() > 0 )
417 {
418 mnCon = floor( aosys.D() / aosys.d_min() / 2.0 );
419 }
420
421 for( int i = 0; i <= N; ++i )
422 {
423 for( int j = -N; j <= N; ++j )
424 {
425
426 realT D = aosys.D();
427 realT k = sqrt( pow( i, 2 ) + pow( j, 2 ) ) / D / overSample;
428
429 realT P = aosys.psd( aosys.atm, k, aosys.lam_sci(), 0, aosys.lam_wfs(), 1.0 );
430
431 if( mnCon > 0 )
432 {
433 if( k * D < mnCon )
434 {
435 P *= pow( math::two_pi<realT>() * aosys.atm.v_wind() * k * ( aosys.minTauWFS() + aosys.deltaTau() ),
436 2 );
437 }
438 }
439
440 psd( N + i, N + j ) = P / pow( D * overSample, 2 );
441 psd( N - i, N - j ) = P / pow( D * overSample, 2 );
442 }
443 }
444
445 // Create Airy PSF for convolution with PSD psd.
446 Eigen::Array<realT, -1, -1> psf;
447 psf.resize( 2 * N + 3, 2 * N + 3 );
448 for( int i = 0; i < psf.rows(); ++i )
449 {
450 for( int j = 0; j < psf.cols(); ++j )
451 {
452 psf( i, j ) = mx::math::func::airyPattern(
453 sqrt( pow( i - floor( .5 * psf.rows() ), 2 ) + pow( j - floor( .5 * psf.cols() ), 2 ) ) / overSample );
454 }
455 }
456
457 mx::AO::analysis::varmapToImage( var, psd, psf );
458
459 return 0;
460}
461
462template <typename realT>
464 const std::string &fname, ///< [out] the path where the output FITS file will be written
465 int N, ///< [in] the linear number of Fourier modes across the aperture. The Nyquist frequency is set by N/2.
466 realT D,
467 realT L_0,
468 bool subPist,
469 bool subTilt,
470 realT absTol,
471 realT relTol,
472 bool modified = true )
473{
474 std::vector<mx::sigproc::fourierModeDef> ml;
475 mx::sigproc::makeFourierModeFreqs_Rect( ml, N );
476
478
479 aosys.loadMagAOX();
480
481 // This is just a normalization parameter in this context.
482 aosys.atm.r_0( 1.0, 0.5e-6 );
483
484 aosys.D( D );
485 aosys.atm.L_0( L_0 );
486 aosys.psd.subPiston( subPist );
487 aosys.psd.subTipTilt( subTilt );
488
489 int psz = ml.size();
490
491 Eigen::Array<realT, -1, -1> covar( psz, psz );
492 covar.setZero();
493
494 // int ncalc = 0.5*( psz*psz - psz);
495
496 ipc::ompLoopWatcher<> watcher( psz, std::cout );
497
498 std::cerr << "Starting . . .\n";
499#pragma omp parallel
500 {
502 Pp.absTol = absTol;
503 Pp.relTol = relTol;
504 Pp.aosys = &aosys;
505
506 if( !modified )
507 Pp.useBasic = true;
508
509 realT result, error;
510
511#pragma omp for schedule( static, 5 )
512 for( int i = 0; i < psz; ++i )
513 {
514 for( int j = i; j < psz; ++j )
515 {
516 Pp.p = ml[i].p;
517 Pp.m = ml[i].m;
518 Pp.n = ml[i].n;
519
520 Pp.pp = ml[j].p;
521 Pp.mp = ml[j].m;
522 Pp.np = ml[j].n;
523 result = Pp.getVariance( error );
524
525 covar( i, j ) = result;
526 }
527 watcher.incrementAndOutputStatus();
528 }
529 }
530
531 fits::fitsHeader head;
532 head.append( "DIAMETER", aosys.D(), "Diameter in meters" );
533 head.append( "NSUBAP", N, "Linear number of s.f. sampled" );
534 head.append( "L0", aosys.atm.L_0( 0 ), "Outer scale (L_0) in meters" );
535 head.append( "SUBPIST", aosys.psd.subPiston(), "Piston subtractioon true/false flag" );
536 head.append( "SUBTILT", aosys.psd.subTipTilt(), "Tip/Tilt subtractioon true/false flag" );
537 head.append( "ABSTOL", absTol, "Absolute tolerance in qagiu" );
538 head.append( "RELTOL", relTol, "Relative tolerance in qagiu" );
539
540 fitsHeaderGitStatus( head, "mxlib_uncomp", MXLIB_UNCOMP_CURRENT_SHA1, MXLIB_UNCOMP_REPO_MODIFIED );
541
543 ff.write( fname + ".fits", covar, head );
544
545 return 0;
546}
547
548template <typename realT, typename aosysT>
549int fourierCovarMapSeparated(
550 const std::string &fname, int N, aosysT &aosys, realT absTol, realT relTol, bool modified = true )
551{
552 std::vector<mx::sigproc::fourierModeDef> ml;
553 mx::sigproc::makeFourierModeFreqs_Rect( ml, N );
554
555 int psz = 0.5 * ml.size();
556
557 Eigen::Array<realT, -1, -1> covar_pp( (int)( 0.5 * psz ), (int)( .5 * psz ) ),
558 covar_ppp( (int)( 0.5 * psz ), (int)( 0.5 * psz ) );
559 covar_pp.setZero();
560 covar_ppp.setZero();
561
562 realT mnCon = 0;
563 if( aosys.d_min() > 0 )
564 {
565 mnCon = floor( aosys.D() / aosys.d_min() / 2.0 );
566 }
567
568 ipc::ompLoopWatcher<> watcher( ( psz + 1 ) * 0.125 * ( psz + 1 ) * 2, std::cout );
569
570#pragma omp parallel
571 {
572
573 fourierCovariance<realT, aosysT> Pp;
574 Pp.absTol = absTol;
575 Pp.relTol = relTol;
576 Pp.aosys = &aosys;
577
578 if( !modified )
579 Pp.useBasic = true;
580
581 Pp.mnCon = mnCon;
582
583 realT result, error;
584
585#pragma omp for schedule( dynamic, 5 )
586 for( int i = 0; i < psz; i += 2 )
587 {
588 for( int j = 0; j <= 0.5 * i; ++j )
589 {
590 for( int k = 0; k < 2; ++k )
591 {
592 Pp.p = ml[i].p;
593 Pp.m = ml[i].m;
594 Pp.n = ml[i].n;
595
596 Pp.pp = ml[2 * j + k].p;
597 Pp.mp = ml[2 * j + k].m;
598 Pp.np = ml[2 * j + k].n;
599 result = Pp.getVariance( error );
600
601 if( Pp.p == Pp.pp )
602 {
603 covar_pp( i / 2, j ) = result;
604 }
605 else
606 {
607 covar_ppp( i / 2, j ) = result;
608 }
609 watcher.incrementAndOutputStatus();
610 }
611 }
612 }
613 }
614
615 fits::fitsHeader head;
616 head.append( "DIAMETER", aosys.D(), "Diameter in meters" );
617 head.append( "L0", aosys.atm.L_0(), "Outer scale (L_0) in meters" );
618 head.append( "SUBPIST", aosys.psd.subPiston(), "Piston subtractioon true/false flag" );
619 head.append( "SUBTILT", aosys.psd.subTipTilt(), "Tip/Tilt subtractioon true/false flag" );
620 head.append( "ABSTOL", absTol, "Absolute tolerance in qagiu" );
621 head.append( "RELTOL", relTol, "Relative tolerance in qagiu" );
622
623 fitsHeaderGitStatus( head, "mxlib_uncomp", MXLIB_UNCOMP_CURRENT_SHA1, MXLIB_UNCOMP_REPO_MODIFIED );
624
625 fits::fitsFile<realT> ff;
626 ff.write( fname + "_pp.fits", covar_pp, head );
627 ff.write( fname + "_ppp.fits", covar_ppp, head );
628
629 return 0;
630}
631
632template <typename realT>
633void calcKLCoeffs( const std::string &outFile, const std::string &cvFile )
634{
635 fits::fitsFile<realT> ff;
636
637 Eigen::Array<realT, -1, -1> cvT, cv, evecs, evals;
638
639 ff.read( cv, cvFile );
640
641 // cvT = cv.block(0,0, 1000,1000);//.transpose();
642
643 std::cerr << cvT.rows() << " " << cvT.cols() << "\n";
644 std::cerr << "1\n";
646
647 double t0 = sys::get_curr_time();
648
649 int info = math::eigenSYEVR<double, double>( evecs, evals, cv, 0, -1, 'U', &mem );
650
651 double t1 = sys::get_curr_time();
652
653 std::cerr << "2\n";
654
655 if( info != 0 )
656 {
657 std::cerr << "info =" << info << "\n";
658 exit( 0 );
659 }
660
661 std::cerr << "Time = " << t1 - t0 << " secs\n";
662
663 // Normalize the eigenvectors
664 for( int i = 0; i < evecs.cols(); ++i )
665 {
666 evecs.col( i ) = evecs.col( i ) / sqrt( fabs( evals( i ) ) );
667 }
668
669 ff.write( outFile, evecs );
670}
671
672template <typename eigenArrT1, typename eigenArrT2, typename eigenArrT3>
673void makeKL( eigenArrT1 &kl, eigenArrT2 &evecs, eigenArrT3 &&rvecs )
674{
675
676 int tNims = evecs.rows();
677 int tNpix = rvecs.rows();
678
679 int n_modes = tNims;
680
681 // Now calculate KL images
682 /*
683 * KL = E^T * R ==> C = A^T * B
684 */
686 CblasTrans,
687 CblasTrans,
688 n_modes,
689 tNpix,
690 tNims,
691 1.,
692 evecs.data(),
693 evecs.rows(),
694 rvecs.data(),
695 rvecs.rows(),
696 0.,
697 kl.data(),
698 kl.rows() );
699}
700
701template <typename realT>
702void makeFKL( const std::string &outFile, const std::string &coeffs, int N, int pupSize )
703{
704 fits::fitsFile<realT> ff;
705 Eigen::Array<realT, -1, -1> evecs;
706
707 ff.read( evecs, coeffs );
708
709 improc::eigenCube<realT> Rims;
710 sigproc::makeFourierBasis_Rect( Rims, pupSize, N, MX_FOURIER_MODIFIED );
711
712 std::cout << Rims.planes() << " " << evecs.cols() << "\n";
713
714 Eigen::Array<realT, -1, -1> kl;
715 kl.resize( Rims.planes(), Rims.rows() * Rims.cols() );
716
717 std::cerr << 1 << "\n";
718 makeKL( kl, evecs, Rims.cube() );
719 std::cerr << 2 << "\n";
720
721 Eigen::Array<realT, -1, -1> klT = kl.transpose();
722 // kl.resize(0,0);
723 // Rims.resize(0,0);
724 // evecs.resize(0,0);
725
726 improc::eigenCube<realT> klims( klT.data(), Rims.rows(), Rims.cols(), Rims.planes() );
727
728 improc::eigenCube<realT> klimsR;
729 klimsR.resize( klims.rows(), klims.cols(), klims.planes() );
730
731 for( int i = 0; i < klims.planes(); ++i )
732 {
733 klimsR.image( i ) = klims.image( klims.planes() - 1 - i );
734 }
735
736 ff.write( outFile, klimsR );
737 std::cerr << 3 << "\n";
738}
739
740} // namespace analysis
741} // namespace AO
742} // namespace mx
743
744#endif // fourierCovariance_hpp
Provides a class to specify atmosphere parameters.
Spatial power spectra used in adaptive optics.
Declares and defines an analytical AO system.
realT L_0(const size_t &n)
Get the value of the outer scale for a single layer.
realT r_0()
Get the value of Fried's parameter r_0 at the reference wavelength lam_0.
Describes an analytic adaptive optics (AO) system.
Definition aoSystem.hpp:65
void loadMagAOX()
Load parameters corresponding to the MagAO-X system.
void D(realT nD)
Set the value of the primary mirror diameter.
Class to manage interactions with a FITS file.
Definition fitsFile.hpp:52
int write(const dataT *im, int d1, int d2, int d3, fitsHeader *head)
Write the contents of a raw array to the FITS file.
Class to manage a complete fits header.
void append(const fitsHeaderCard &card)
Append a fitsHeaderCard to the end of the header.
A class to track the number of iterations in an OMP parallelized loop.
void incrementAndOutputStatus()
Increment and output status.
realT phiInt_mod(realT phi, void *params)
Worker for the azimuthal integral (in phi) for the modified Fourier mode covariance.
int fourierPSDMap(improc::eigenImage< realT > &var, improc::eigenImage< realT > &psd, int N, int overSample, aosysT &aosys)
Calculate a map of Fourier variances by convolution with the PSD.
int fourierCovarMap(const std::string &fname, int N, realT D, realT L_0, bool subPist, bool subTilt, realT absTol, realT relTol, bool modified=true)
int fourierVarVec(const std::string &fname, int N, aosysT &aosys, realT absTol, realT relTol, bool modifed=true)
Calculate a vector of Fourier mode variances.
realT kInt(realT k, void *params)
Worker function for the radial integral in the covariance calculation.
@ modified
The modified Fourier basis from .
Eigen::Array< scalarT, -1, -1 > eigenImage
Definition of the eigenImage type, which is an alias for Eigen::Array.
void fitsHeaderGitStatus(fitsHeader &head, const std::string &repoName, const char *sha1, int modified)
Write the status of a Git repository to HISTORY in a FITS header.
realT airyPattern(realT x)
The classical Airy pattern.
T jinc(const T &x)
The Jinc function.
Definition jinc.hpp:61
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
realT phiInt_basic(realT phi, void *params)
Worker for the azimuthal integral (in phi) for the basic Fourier mode covariance.
void varmapToImage(imageT &im, imageT &varmap, imageT &psf)
Convert a wavefront variance map to an intensity image by convolving with the PSF.
typeT get_curr_time()
Get the current system time in seconds.
Definition timeUtils.hpp:90
The mxlib c++ namespace.
Definition mxError.hpp:106
Structure to manage the Fourier mode covariance calculation, passed to integration functions.
realT m
The m-index of the unprimed mode, corresponding to the component of spatial frequency.
int p
p-index of the unprimed mode. +/-1 for modified modes. If basic, then +1==>cosine,...
realT n
The n-indexof the unprimed mode, corresponding to the component of spatial frequency.
realT getVariance(realT &error)
Calculate the covariance between the two modes.
realT absTol
Absolute tolerance for the radial integral. Default is 1e-7.
int pp
p-index of the primed mode. +/-1 for modified modes. If basic, then +1==>cosine, -1==>sine.
aosysT * aosys
Pointer to an AO system, which contains the relevant spatial PSD of turbulence.
realT np
The n-indexof the primed mode, corresponding to the component of spatial frequency.
gsl_integration_workspace * phi_w
Working memory for the azimuthal integral.
gsl_integration_workspace * k_w
Working memory for the radial integral.
realT relTol
Relative tolerance for the radial integral. Default is 1e-7.
realT mnCon
The maximum controlled value of spatial frequency (k*D). If < 0 then not controlled.
realT mp
The m-index of the primed mode, corresponding to the component of spatial frequency.
realT k
Spatial frequency being calculated, passed for use in the integrand worker functions.
A utility to convert a wavefront variance map to an intensity image.