mxlib
c++ tools for analyzing astronomical data and other tasks by Jared R. Males. [git repo]
Loading...
Searching...
No Matches
fourierTemporalPSD.hpp
Go to the documentation of this file.
1/** \file fourierTemporalPSD.hpp
2 * \author Jared R. Males (jaredmales@gmail.com)
3 * \brief Calculation of the temporal PSD of Fourier modes.
4 * \ingroup mxAOm_files
5 *
6 */
7
8//***********************************************************************//
9// Copyright 2016-2022 Jared R. Males (jaredmales@gmail.com)
10//
11// This file is part of mxlib.
12//
13// mxlib is free software: you can redistribute it and/or modify
14// it under the terms of the GNU General Public License as published by
15// the Free Software Foundation, either version 3 of the License, or
16// (at your option) any later version.
17//
18// mxlib is distributed in the hope that it will be useful,
19// but WITHOUT ANY WARRANTY; without even the implied warranty of
20// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21// GNU General Public License for more details.
22//
23// You should have received a copy of the GNU General Public License
24// along with mxlib. If not, see <http://www.gnu.org/licenses/>.
25//***********************************************************************//
26
27#ifndef fourierTemporalPSD_hpp
28#define fourierTemporalPSD_hpp
29
30#include <iostream>
31#include <fstream>
32
33#include <sys/stat.h>
34
35#include <gsl/gsl_integration.h>
36#include <gsl/gsl_errno.h>
37
38#include <Eigen/Dense>
39
40#include "../../math/constants.hpp"
41#include "../../math/func/jinc.hpp"
42#include "../../math/func/airyPattern.hpp"
43#include "../../math/vectorUtils.hpp"
44#include "../../ioutils/fits/fitsFile.hpp"
45#include "../../sigproc/fourierModes.hpp"
46#include "../../sigproc/psdVarMean.hpp"
47#include "../../ioutils/stringUtils.hpp"
48#include "../../ioutils/readColumns.hpp"
49#include "../../ioutils/binVector.hpp"
50#include "../../ioutils/fileUtils.hpp"
51
52#include "../../ipc/ompLoopWatcher.hpp"
53#include "../../mxError.hpp"
54
55#include "aoSystem.hpp"
56#include "aoPSDs.hpp"
57#include "wfsNoisePSD.hpp"
59#include "clGainOpt.hpp"
60#include "varmapToImage.hpp"
61#include "speckleAmpPSD.hpp"
62
63#include "aoConstants.hpp"
64
65namespace mx
66{
67namespace AO
68{
69namespace analysis
70{
71
72#ifndef WSZ
73
74/** \def WFZ
75 * \brief Size of the GSL integration workspace
76 */
77#define WSZ 100000
78
79#endif
80
81enum basis : unsigned int
82{
83 basic, ///< The basic sine and cosine Fourier modes
84 modified, ///< The modified Fourier basis from \cite males_guyon_2017
85 projected_basic,
86 projectedm_modified
87};
88
89// Forward declaration
90template <typename realT, typename aosysT>
91realT F_basic( realT kv, void *params );
92
93// Forward declaration
94template <typename realT, typename aosysT>
95realT F_mod( realT kv, void *params );
96
97// Forward declaration
98template <typename realT, typename aosysT>
99realT Fm_projMod( realT kv, void *params );
100
101/// Class to manage the calculation of temporal PSDs of the Fourier modes in atmospheric turbulence.
102/** Works with both basic (sines/cosines) and modified Fourier modes.
103 *
104 * \tparam realT is a real floating point type for calculations. Currently must be double due to gsl_integration.
105 * \tparam aosysT is an AO system type, usually of type ao_system.
106 *
107 * \todo Split off the integration parameters in a separate structure.
108 * \todo once integration parameters are in a separate structure, make this a class with protected members.
109 * \todo GSL error handling
110 *
111 * \ingroup mxAOAnalytic
112 */
113template <typename _realT, typename aosysT>
115{
116 /// The type for arithmetic
117 typedef _realT realT;
118
119 /// The complex type for arithmetic
120 typedef std::complex<realT> complexT;
121
122 /// Pointer to an AO system structure.
123 aosysT *m_aosys{ nullptr };
124
125 realT m_f{ 0 }; ///< the current temporal frequency
126 realT m_m{ 0 }; ///< the spatial frequency m index
127 realT m_n{ 0 }; ///< the spatial frequency n index
128 realT m_cq{ 0 }; ///< The cosine of the wind direction
129 realT m_sq{ 0 }; ///< The sine of the wind direction
130 realT m_spatialFilter{ false }; ///< Flag indicating if a spatial filter is applied
131
132 bool m_strehlOG{ false };
133 bool m_uncorrectedOG{ false };
134
135 realT m_f0{ 0 }; ///< the Berdja boiling parameter
136
137 int m_p{ 1 }; ///< The parity of the mode, +/- 1. If _useBasis==MXAO_FTPSD_BASIS_BASIC then +1 indicates cosine, -1
138 ///< indicates sine.
139 int _layer_i; ///< The index of the current layer.
140
141 int _useBasis; ///< Set to MXAO_FTPSD_BASIS_BASIC/MODIFIED/PROJECTED_* to use the basic sin/cos modes, the modified
142 ///< Fourier modes, or a projection of them.
143
144 /// Workspace for the gsl integrators, allocated to WSZ if constructed as worker (with allocate == true).
145 gsl_integration_workspace *_w;
146
147 realT _absTol; ///< The absolute tolerance to use in the GSL integrator
148 realT _relTol; ///< The relative tolerance to use in the GSL integrator
149
150 int m_mode_i; ///< Projected basis mode index
151
152 Eigen::Array<realT, -1, -1> m_modeCoeffs; ///< Coeeficients of the projection onto the Fourier modes
153 realT m_minCoeffVal;
154
155 std::vector<realT> Jps;
156 std::vector<realT> Jms;
157 std::vector<int> ps;
158 std::vector<realT> ms;
159 std::vector<realT> ns;
160
161 void initProjection()
162 {
163 Jps.resize( m_modeCoeffs.cols() );
164 Jms.resize( m_modeCoeffs.cols() );
165 ps.resize( m_modeCoeffs.cols() );
166 ms.resize( m_modeCoeffs.cols() );
167 ns.resize( m_modeCoeffs.cols() );
168
169 for( int i = 0; i < m_modeCoeffs.cols(); ++i )
170 {
171 int m, n, p;
172 sigproc::fourierModeCoordinates( m, n, p, i );
173 ps[i] = p;
174 ms[i] = m;
175 ns[i] = n;
176 }
177 }
178
179 public:
180 /// Default c'tor
182
183 /// Constructor with workspace allocation
184 /**
185 * \param allocate if true, then the workspace for GSL integrators is allocated.
186 */
187 explicit fourierTemporalPSD( bool allocate );
188
189 /// Destructor
190 /** Frees GSL workspace if it was allocated.
191 */
193
194 protected:
195 /// Initialize parameters to default values.
196 void initialize();
197
198 public:
199 /** \name GSL Integration Tolerances
200 * For good results it seems that absolute tolerance (absTol) needs to be 1e-10. Lower tolerances cause some
201 * frequencies to drop out, etc. Relative tolerance (relTol) seems to be less sensitive, and 1e-4 works on cases
202 * tested as of 1 Jan, 2017.
203 *
204 * See the documentation for the GSL Library integrators at
205 * (https://www.gnu.org/software/gsl/manual/htmlm_node/QAGI-adaptive-integration-on-infinite-intervals.html)
206 * @{
207 */
208
209 /// Set absolute tolerance
210 /**
211 * \param at is the new absolute tolerance.
212 */
213 void absTol( realT at );
214
215 /// Get the current absolute tolerance
216 /**
217 * \returns _absTol
218 */
219 realT absTol();
220
221 /// Set relative tolerance
222 /**
223 * \param rt is the new relative tolerance.
224 */
225 void relTol( realT rt );
226
227 /// Get the current relative tolerance
228 /**
229 * \returns _relTol
230 */
231 realT relTol();
232
233 ///@}
234
235 /// Determine the frequency of the highest V-dot-k peak
236 /**
237 * \param m the spatial frequency u index
238 * \param n the spatial frequency v index
239 *
240 * \return the frequency of the fastest peak
241 */
242 realT fastestPeak( int m, int n );
243
244 /// Calculate the temporal PSD for a Fourier mode for a single layer.
245 /**
246 *
247 * \todo implement error checking.
248 * \todo need a way to track convergence failures in integral without throwing an error.
249 * \todo need better handling of averaging for the -17/3 extension.
250 *
251 */
252 int
253 singleLayerPSD( std::vector<realT> &PSD, ///< [out] the calculated PSD
254 std::vector<realT> &freq, ///< [in] the populated temporal frequency grid defining the frequencies
255 ///< at which the PSD is calculated
256 realT m, ///< [in] the first index of the spatial frequency
257 realT n, ///< [in] the second index of the spatial frequency
258 int layer_i, ///< [in] the index of the layer, for accessing the atmosphere parameters
259 int p, ///< [in] sets which mode is calculated (if basic modes, p = -1 for sine, p = +1 for cosine)
260 realT fmax = 0 ///< [in] [optional] set the maximum temporal frequency for the calculation. The PSD
261 ///< is filled in with a -17/3 power law past this frequency.
262 );
263
264 ///\cond multilayerm_parallel
265 // Conditional to exclude from Doxygen.
266
267 protected:
268 // Type to allow overloading of the multiLayerPSD workers based on whether they are parallelized or not.
269 template <bool m_parallel>
270 struct isParallel
271 {
272 };
273
274 // Parallelized version of multiLayerPSD, with OMP directives.
275 int m_multiLayerPSD( std::vector<realT> &PSD,
276 std::vector<realT> &freq,
277 realT m,
278 realT n,
279 int p,
280 realT fmax,
281 isParallel<true> parallel );
282
283 // Non-Parallelized version of multiLayerPSD, without OMP directives.
284 int m_multiLayerPSD( std::vector<realT> &PSD,
285 std::vector<realT> &freq,
286 realT m,
287 realT n,
288 int p,
289 realT fmax,
290 isParallel<false> parallel );
291
292 ///\endcond
293
294 public:
295 /// Calculate the temporal PSD for a Fourier mode in a multi-layer model.
296 /**
297 *
298 * \tparam parallel controls whether layers are calculated in parallel. Default is true. Set to false if this is
299 * called inside a parallelized loop, as in \ref makePSDGrid.
300 *
301 * \todo implement error checking
302 * \todo handle reports of convergence failures form singleLayerPSD when implemented.
303 *
304 */
305 template <bool parallel = true>
306 int multiLayerPSD(
307 std::vector<realT> &PSD, ///< [out] the calculated PSD
308 std::vector<realT>
309 &freq, ///< [in] the populated temporal frequency grid defining at which frequencies the PSD is calculated
310 realT m, ///< [in] the first index of the spatial frequency
311 realT n, ///< [in] the second index of the spatial frequency
312 int p, ///< [in] sets which mode is calculated (if basic modes, p = -1 for sine, p = +1 for cosine)
313 realT fmax =
314 0 ///< [in] [optional] set the maximum temporal frequency for the calculation. The PSD is filled in
315 /// with a -17/3 power law past this frequency. If 0, then it is taken to be 150 Hz + 2*fastestPeak(m,n).
316 );
317
318 /// Calculate PSDs over a grid of spatial frequencies.
319 /** The grid of spatial frequencies is square, set by the maximum value of m and n.
320 *
321 * The PSDs are written as mx::binVector binary files to a directory. We do not use FITS since
322 * this adds overhead and cfitisio handles parallelization poorly due to the limitation on number of created file
323 * pointers.
324 *
325 */
326 void makePSDGrid( const std::string &dir, ///< [in] the directory for output of the PSDs
327 int mnMax, ///< [in] the maximum value of m and n in the grid.
328 realT dFreq, ///< [in] the temporal frequency spacing.
329 realT maxFreq, ///< [in] the maximum temporal frequency to calculate
330 realT fmax = 0 ///< [in] [optional] set the maximum temporal frequency for the calculation. The
331 ///< PSD is filled in with a -17/3 power law past
332 /// this frequency. If 0, then it is taken to be 150 Hz + 2*fastestPeak(m,n).
333 );
334
335 /// Analyze a PSD grid under closed-loop control.
336 /** This always analyzes the simple integrator, and can also analyze the linear predictor controller. Outputs maps
337 * of optimum gains, predictor coefficients, variances, and contrasts for a range of guide star magnitudes.
338 * Optionally calculates speckle lifetimes. Optionally writes the closed-loop PSDs and transfer functions.
339 */
340 int analyzePSDGrid(
341 const std::string &subDir, ///< [out] the sub-directory of psdDir where to write the results. Is created.
342 const std::string &psdDir, ///< [in] the directory containing the grid of PSDs.
343 int mnMax, ///< [in] the maximum value of m and n in the grid.
344 int mnCon, ///< [in] the maximum value of m and n which can be controlled.
345 realT gfixed, ///< [in] if > 0 then this fixed gain is used in the SI.
346 int lpNc, ///< [in] the number of linear predictor coefficients to analyze. If 0 then LP is not analyzed.
347 realT lpRegPrecision, ///< [in] the initial precision for the LP regularization algorithm. Normal value is 2.
348 ///< Higher is faster. Decrease if getting stuck in local minima.
349 std::vector<realT> &mags, ///< [in] the guide star magnitudes to analyze for.
350 int lifetimeTrials = 0, ///< [in] [optional] number of trials used for calculating speckle lifetimes. If 0,
351 ///< lifetimes are not calculated.
352 bool uncontrolledLifetimes =
353 false, ///< [in] [optional] flag controlling whether lifetimes are calculated for uncontrolled modes.
354 bool writePSDs = false, ///< [in] [optional] flag controlling if resultant PSDs are saved
355 bool writeXfer = false ///< [in] [optional] flag controlling if resultant Xfer functions are saved
356 );
357
358 int intensityPSD( const std::string &subDir, // sub-directory of psdDir which contains the controlled system
359 // results, and where the lifetimes will be written.
360 const std::string &psdDir, // directory containing the PSDS
361 const std::string &CvdPath, // path to the covariance decomposition
362 int mnMax,
363 int mnCon,
364 const std::string &si_or_lp,
365 std::vector<realT> &mags,
366 int lifetimeTrials,
367 bool writePSDs );
368 /*const std::string & subDir, ///< [out] the sub-directory of psdDir where to write the results.
369 const std::string & psdDir, ///< [in] the directory containing the grid of PSDs.
370 const std::string & CvdPath,
371 int mnMax, ///< [in] the maximum value of m and n in the grid.
372 int mnCon, ///< [in] the maximum value of m and n which can be
373 controlled. int lpNc, ///< [in] the number of linear predictor coefficients to
374 analyze. If 0 then LP is not analyzed. std::vector<realT> & mags, ///< [in] the guide star magnitudes
375 to analyze for. int lifetimeTrials = 0, ///< [in] [optional] number of trials used for calculating
376 speckle lifetimes. If 0, lifetimes are not calculated. bool uncontrolledLifetimes = false, ///< [in] [optional]
377 flag controlling whether lifetimes are calculate for uncontrolled modes. bool writePSDs = false ///<
378 [in] [optional] flag controlling if resultant PSDs are saved
379 );*/
380
381 /** \name Disk Storage
382 * These methods handle writing to and reading from disk. The calculated PSDs are store in the mx::BinVector binary
383 * format.
384 *
385 * A grid of PSDs is specified by its directory name. The directory contains one frequency file (freq.binv), and a
386 * set of PSD files, named according to psd_<m>_<n>_.binv.
387 *
388 *
389 * @{
390 */
391 /// Get the frequency scale for a PSD grid.
392 /**
393 */
394 int getGridFreq( std::vector<realT> &freq, ///< [out] the vector to populate with the frequency scale.
395 const std::string &dir ///< [in] specifies the directory containing the grid.
396 );
397
398 /// Get a single PSD from a PSD grid.
399 /**
400 */
401 int getGridPSD( std::vector<realT> &psd, ///< [out] the vector to populate with the PSD.
402 const std::string &dir, ///< [in] specifies the directory containing the grid.
403 int m, ///< [in] specifies the u component of spatial frequency.
404 int n ///< [in] specifies the v component of spatial frequency.
405 );
406
407 /// Get both the frequency scale and a single PSD from a PSD grid.
408 /**
409 */
410 int getGridPSD( std::vector<realT> &freq, ///< [out] the vector to populate with the frequency scale.
411 std::vector<realT> &psd, ///< [out] the vector to populate with the PSD.
412 const std::string &dir, ///< [in] specifies the directory containing the grid.
413 int m, ///< [in] specifies the u component of spatial frequency.
414 int n ///< [in] specifies the v component of spatial frequency.
415 );
416
417 ///@}
418};
419
420template <typename realT, typename aosysT>
422{
423 m_aosys = nullptr;
424 initialize();
425}
426
427template <typename realT, typename aosysT>
429{
430 m_aosys = nullptr;
431 initialize();
432
433 if( allocate )
434 {
435 _w = gsl_integration_workspace_alloc( WSZ );
436 }
437}
438
439template <typename realT, typename aosysT>
441{
442 if( _w )
443 {
444 gsl_integration_workspace_free( _w );
445 }
446}
447
448template <typename realT, typename aosysT>
450{
451 _useBasis = basis::modified;
452 _w = 0;
453
454 _absTol = 1e-10;
455 _relTol = 1e-4;
456}
457
458template <typename realT, typename aosysT>
460{
461 _absTol = at;
462}
463
464template <typename realT, typename aosysT>
466{
467 return _absTol;
468}
469
470template <typename realT, typename aosysT>
472{
473 _relTol = rt;
474}
475
476template <typename realT, typename aosysT>
478{
479 return _relTol;
480}
481
482template <typename realT, typename aosysT>
484{
485 realT ku, kv, vu, vv;
486
487 ku = ( (realT)m / m_aosys->D() );
488 kv = ( (realT)n / m_aosys->D() );
489
490 realT f, fmax = 0;
491
492 for( size_t i = 0; i < m_aosys->atm.n_layers(); ++i )
493 {
494 vu = m_aosys->atm.layer_v_wind( i ) * cos( m_aosys->atm.layer_dir( i ) );
495 vv = m_aosys->atm.layer_v_wind( i ) * sin( m_aosys->atm.layer_dir( i ) );
496
497 f = fabs( ku * vu + kv * vv );
498 if( f > fmax )
499 fmax = f;
500 }
501
502 return fmax;
503}
504
505template <typename realT, typename aosysT>
507 std::vector<realT> &PSD, std::vector<realT> &freq, realT m, realT n, int layer_i, int p, realT fmax )
508{
509 if( fmax == 0 )
510 fmax = freq[freq.size() - 1];
511
512 realT v_wind = m_aosys->atm.layer_v_wind( layer_i );
513 realT q_wind = m_aosys->atm.layer_dir( layer_i );
514
515 // Rotate the basis
516 realT cq = cos( q_wind );
517 realT sq = sin( q_wind );
518
519 realT scale = 2 * ( 1 / v_wind ); // Factor of 2 for negative frequencies.
520
521 // We'll get the occasional failure to reach tolerance error, just ignore them all for now.
522 gsl_set_error_handler_off();
523
524 // Create a local instance so that we're reentrant
526
527 params.m_aosys = m_aosys;
528 params._layer_i = layer_i;
529 params.m_m = m * cq + n * sq;
530 params.m_n = -m * sq + n * cq;
531 params.m_cq = cq; // for de-rotating ku and kv for spatial filtering
532 params.m_sq = sq; // for de-rotation ku and kv for spatial filtering
533 if( m_aosys->spatialFilter_ku() < std::numeric_limits<realT>::max() ||
534 m_aosys->spatialFilter_kv() < std::numeric_limits<realT>::max() )
535 params.m_spatialFilter = true;
536
537 params.m_p = p;
538
539 params.m_mode_i = m_mode_i;
540 params.m_modeCoeffs = m_modeCoeffs;
541 params.m_minCoeffVal = m_minCoeffVal;
542
543 realT result, error;
544
545 // Setup the GSL calculation
546 gsl_function func;
547 switch( _useBasis )
548 {
549 case basis::basic: // MXAO_FTPSD_BASIS_BASIC:
550 func.function = &F_basic<realT, aosysT>;
551 break;
552 case basis::modified: // MXAO_FTPSD_BASIS_MODIFIED:
553 func.function = &F_mod<realT, aosysT>;
554 break;
555 case basis::projected_basic: // MXAO_FTPSD_BASIS_PROJECTED_BASIC:
556 mxError(
557 "fourierTemporalPSD::singleLayerPSD", MXE_NOTIMPL, "Projected basic-basis modes are not implemented." );
558 break;
559 case basis::projectedm_modified: // MXAO_FTPSD_BASIS_PROJECTED_MODIFIED:
560 params.Jps = Jps;
561 params.Jms = Jms;
562 params.ms = ms;
563 params.ns = ns;
564 params.ps = ps;
565
566 func.function = &Fm_projMod<realT, aosysT>;
567
568 break;
569 default:
570 mxError( "fourierTemporalPSD::singleLayerPSD", MXE_INVALIDARG, "value of _useBasis is not valid." );
571 return -1;
572 }
573
574 func.params = &params;
575
576 // Here we only calculate up to fmax.
577 size_t i = 0;
578 while( freq[i] <= fmax )
579 {
580 params.m_f = freq[i];
581
582 int ec = gsl_integration_qagi( &func, _absTol, _relTol, WSZ, params._w, &result, &error );
583
584 if( ec == GSL_EDIVERGE )
585 {
586 std::cerr << "GSL_EDIVERGE:" << p << " " << freq[i] << " " << v_wind << " " << m << " " << n << " " << m_m
587 << " " << m_n << "\n";
588 std::cerr << "ignoring . . .\n";
589 }
590
591 PSD[i] = scale * result;
592
593 ++i;
594 if( i >= freq.size() )
595 break;
596 }
597
598 // Now fill in from fmax to the actual max frequency with a -(alpha+2) power law.
599 size_t j = i;
600
601 if( j == freq.size() )
602 return 0;
603
604 // First average result for last 50.
605 PSD[j] =
606 PSD[i - 50] * pow( freq[i - 50] / freq[j], m_aosys->atm.alpha( layer_i ) + 2 ); // seventeen_thirds<realT>());
607 for( size_t k = 49; k > 0; --k )
608 {
609 PSD[j] +=
610 PSD[i - k] * pow( freq[i - k] / freq[j], m_aosys->atm.alpha( layer_i ) + 2 ); // seventeen_thirds<realT>());
611 }
612 PSD[j] /= 50.0;
613 ++j;
614 ++i;
615 if( j == freq.size() )
616 return 0;
617 while( j < freq.size() )
618 {
619 PSD[j] =
620 PSD[i - 1] * pow( freq[i - 1] / freq[j], m_aosys->atm.alpha( layer_i ) + 2 ); // seventeen_thirds<realT>());
621 ++j;
622 }
623
624 return 0;
625}
626
627template <typename realT, typename aosysT>
629 std::vector<realT> &PSD, std::vector<realT> &freq, realT m, realT n, int p, realT fmax, isParallel<true> parallel )
630{
631 static_cast<void>( parallel );
632
633#pragma omp parallel
634 {
635 // Records each layer PSD
636 std::vector<realT> single_PSD( freq.size() );
637
638#pragma omp for
639 for( size_t i = 0; i < m_aosys->atm.n_layers(); ++i )
640 {
641 singleLayerPSD( single_PSD, freq, m, n, i, p, fmax );
642
643// Now add the single layer PSD to the overall PSD, weighted by Cn2
644#pragma omp critical
645 for( size_t j = 0; j < freq.size(); ++j )
646 {
647 PSD[j] += m_aosys->atm.layer_Cn2( i ) * single_PSD[j];
648 }
649 }
650 }
651
652 return 0;
653}
654
655template <typename realT, typename aosysT>
656int fourierTemporalPSD<realT, aosysT>::m_multiLayerPSD(
657 std::vector<realT> &PSD, std::vector<realT> &freq, realT m, realT n, int p, realT fmax, isParallel<false> parallel )
658{
659 static_cast<void>( parallel );
660
661 // Records each layer PSD
662 std::vector<realT> single_PSD( freq.size() );
663
664 for( size_t i = 0; i < m_aosys->atm.n_layers(); ++i )
665 {
666 singleLayerPSD( single_PSD, freq, m, n, i, p, fmax );
667
668 // Now add the single layer PSD to the overall PSD, weighted by Cn2
669 for( size_t j = 0; j < freq.size(); ++j )
670 {
671 PSD[j] += m_aosys->atm.layer_Cn2( i ) * single_PSD[j];
672 }
673 }
674
675 return 0;
676}
677
678template <typename realT, typename aosysT>
679template <bool parallel>
681 std::vector<realT> &PSD, std::vector<realT> &freq, realT m, realT n, int p, realT fmax )
682{
683 // PSD is zeroed every time to make sure we don't accumulate on repeated calls
684 for( size_t j = 0; j < PSD.size(); ++j )
685 PSD[j] = 0;
686
687 if( fmax == 0 )
688 {
689 fmax = 150 + 2 * fastestPeak( m, n );
690 }
691
692 return m_multiLayerPSD( PSD, freq, m, n, p, fmax, isParallel<parallel>() );
693}
694
695template <typename realT, typename aosysT>
697 const std::string &dir, int mnMax, realT dFreq, realT maxFreq, realT fmax )
698{
699 std::vector<realT> freq;
700
701 std::vector<sigproc::fourierModeDef> spf;
702
703 std::string fn;
704
705 sigproc::makeFourierModeFreqs_Rect( spf, 2 * mnMax );
706
707 // Calculate number of samples, and make sure we get to at least maxFreq
708 int N = (int)( maxFreq / dFreq );
709 if( N * dFreq < maxFreq )
710 N += 1;
711
712 /*** Dump Params to file ***/
713 mkdir( dir.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH );
714
715 std::ofstream fout;
716 fn = dir + '/' + "params.txt";
717 fout.open( fn );
718
719 fout << "#---------------------------\n";
720 m_aosys->dumpAOSystem( fout );
721 fout << "#---------------------------\n";
722 fout << "# PSD Grid Parameters\n";
723 fout << "# absTol " << _absTol << '\n';
724 fout << "# relTol " << _relTol << '\n';
725 fout << "# useBasis " << _useBasis << '\n';
726 fout << "# makePSDGrid call:\n";
727 fout << "# mnMax = " << mnMax << '\n';
728 fout << "# dFreq = " << dFreq << '\n';
729 fout << "# maxFreq = " << maxFreq << '\n';
730 fout << "# fmax = " << fmax << '\n';
731 fout << "#---------------------------\n";
732
733 fout.close();
734
735 // Make directory
736 std::string psddir = dir + "/psds";
737 mkdir( psddir.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH );
738
739 // Create frequency scale.
740 math::vectorScale( freq, N, dFreq, 0 ); // dFreq); //offset from 0 by dFreq, so f=0 not included
741
742 fn = psddir + '/' + "freq.binv";
743
744 ioutils::writeBinVector( fn, freq );
745
746 size_t nLoops = 0.5 * spf.size();
747
748 ipc::ompLoopWatcher<> watcher( nLoops, std::cout );
749
750#pragma omp parallel
751 {
752 std::vector<realT> PSD;
753 PSD.resize( N );
754 std::string fname;
755
756 int m, n;
757
758#pragma omp for
759 for( size_t i = 0; i < nLoops; ++i )
760 {
761 m = spf[i * 2].m;
762 n = spf[i * 2].n;
763
764 if( fabs( (realT)m / m_aosys->D() ) >= m_aosys->spatialFilter_ku() ||
765 fabs( (realT)n / m_aosys->D() ) >= m_aosys->spatialFilter_kv() )
766 {
767 watcher.incrementAndOutputStatus();
768 continue;
769 }
770
771 multiLayerPSD<false>( PSD, freq, m, n, 1, fmax );
772
773 fname =
774 psddir + '/' + "psd_" + ioutils::convertToString( m ) + '_' + ioutils::convertToString( n ) + ".binv";
775
776 ioutils::writeBinVector( fname, PSD );
777
778 watcher.incrementAndOutputStatus();
779 }
780 }
781}
782
783template <typename realT, typename aosysT>
785 const std::string &psdDir,
786 int mnMax,
787 int mnCon,
788 realT gfixed,
789 int lpNc,
790 realT lpRegPrecision,
791 std::vector<realT> &mags,
792 int lifetimeTrials,
793 bool uncontrolledLifetimes,
794 bool writePSDs,
795 bool writeXfer )
796{
797
798 std::string dir = psdDir + "/" + subDir;
799
800 /*** Dump Params to file ***/
801 mkdir( dir.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH );
802
803 std::ofstream fout;
804 std::string fn = dir + '/' + "params.txt";
805 fout.open( fn );
806
807 fout << "#---------------------------\n";
808 m_aosys->dumpAOSystem( fout );
809 fout << "#---------------------------\n";
810 fout << "# Analysis Parameters\n";
811 fout << "# mnMax = " << mnMax << '\n';
812 fout << "# mnCon = " << mnCon << '\n';
813 fout << "# lpNc = " << lpNc << '\n';
814 fout << "# mags = ";
815 for( size_t i = 0; i < mags.size() - 1; ++i )
816 fout << mags[i] << ",";
817 fout << mags[mags.size() - 1] << '\n';
818 fout << "# lifetimeTrials = " << lifetimeTrials << '\n';
819 fout << "# uncontrolledLifetimes = " << uncontrolledLifetimes << '\n';
820 fout << "# writePSDs = " << std::boolalpha << writePSDs << '\n';
821 fout << "# writeXfer = " << std::boolalpha << writeXfer << '\n';
822
823 fout.close();
824
825 //**** Calculating A Variance Map ****//
826
827 realT fs = 1.0 / m_aosys->tauWFS();
828 realT tauWFS = m_aosys->tauWFS();
829 realT deltaTau = m_aosys->deltaTau();
830
831 std::vector<sigproc::fourierModeDef> fms;
832
833 sigproc::makeFourierModeFreqs_Rect( fms, 2 * mnMax );
834 size_t nModes = 0.5 * fms.size();
835
836 Eigen::Array<realT, -1, -1> gains, vars, speckleLifetimes, gains_lp, vars_lp, speckleLifetimes_lp;
837
838 gains.resize( 2 * mnMax + 1, 2 * mnMax + 1 );
839 vars.resize( 2 * mnMax + 1, 2 * mnMax + 1 );
840 speckleLifetimes.resize( 2 * mnMax + 1, 2 * mnMax + 1 );
841
842 gains( mnMax, mnMax ) = 0;
843 vars( mnMax, mnMax ) = 0;
844 speckleLifetimes( mnMax, mnMax ) = 0;
845
846 gains_lp.resize( 2 * mnMax + 1, 2 * mnMax + 1 );
847 vars_lp.resize( 2 * mnMax + 1, 2 * mnMax + 1 );
848 speckleLifetimes_lp.resize( 2 * mnMax + 1, 2 * mnMax + 1 );
849
850 gains_lp( mnMax, mnMax ) = 0;
851 vars_lp( mnMax, mnMax ) = 0;
852 speckleLifetimes_lp( mnMax, mnMax ) = 0;
853
854 bool doLP = false;
855 if( lpNc > 1 )
856 doLP = true;
857 Eigen::Array<realT, -1, -1> lpC;
858
859 if( doLP )
860 {
861 lpC.resize( nModes, lpNc );
862 lpC.setZero();
863 }
864
865 std::vector<realT> S_si, S_lp;
866
867 if( writePSDs )
868 {
869 for( size_t s = 0; s < mags.size(); ++s )
870 {
871 std::string psdOutDir = dir + "/" + "outputPSDs_" + ioutils::convertToString( mags[s] ) + "_si";
872 mkdir( psdOutDir.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH );
873
874 if( doLP )
875 {
876 psdOutDir = dir + "/" + "outputPSDs_" + ioutils::convertToString( mags[s] ) + "_lp";
877 mkdir( psdOutDir.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH );
878 }
879 }
880 }
881
882 m_aosys->beta_p( 1, 1 );
883
884 ipc::ompLoopWatcher<> watcher( nModes * mags.size(), std::cout );
885
886 for( size_t s = 0; s < mags.size(); ++s )
887 {
888 m_aosys->starMag( mags[s] );
889
890 // In non-parallel space calculate OG=Strehl
891
892 realT opticalGain{ 1.0 };
893
894 if( m_strehlOG )
895 {
896 // Iterative optical gain
897 /// \todo need upstream NCP and CP NCP and NCP NCP
898 realT ncp = m_aosys->ncp_wfe(); // save ncp and then set it to zero for this part.
899 m_aosys->ncp_wfe( 0 );
900
901 realT lam_sci = m_aosys->lam_sci();
902 m_aosys->lam_sci( m_aosys->lam_wfs() );
903
904 realT S = m_aosys->strehl();
905 std::cerr << S << "\n";
906
907 for( int s = 0; s < 4; ++s )
908 {
909 m_aosys->opticalGain( S );
910 m_aosys->optd( m_aosys->optd() ); // just trigger a re-calc
911 S = m_aosys->strehl();
912 std::cerr << S << "\n";
913 }
914
915 opticalGain = S;
916
917 m_aosys->lam_sci( lam_sci );
918 m_aosys->ncp_wfe( ncp );
919 }
920
921 m_aosys->optd( m_aosys->optd() ); // just trigger a re-calc
922 realT strehl = m_aosys->strehl();
923
924#pragma omp parallel
925 {
926 realT localMag = mags[s];
927
928 realT var0;
929
930 realT gopt, var;
931
932 realT gopt_lp, var_lp;
933
934 std::vector<realT> tfreq; // The frequency scale of the PSDs
935 std::vector<realT> tPSDp; // The open-loop turbulence PSD for a Fourier mode
936 std::vector<realT>
937 tPSDpPOL; // The pseudo-open-loop turbulence PSD for a Fourier mode, with optical gain effects included
938
939 std::vector<realT> tfreqHF; // The above-Nyquist frequencies, saved if outputing the PSDS.
940 std::vector<realT> tPSDpHF; // The above-Nyquist component of the open-loop PSD, saved if outputing the
941 // PSDs.
942
943 //**< Get the frequency grid, and nyquist limit it to f_s/2
944 getGridPSD( tfreq, tPSDp, psdDir, 0, 1 ); // To get the freq grid
945
946 size_t imax = 0;
947 while( tfreq[imax] <= 0.5 * fs )
948 {
949 ++imax;
950 if( imax > tfreq.size() - 1 )
951 break;
952 }
953
954 if( imax < tfreq.size() - 1 && tfreq[imax] <= 0.5 * fs * ( 1.0 + 1e-7 ) )
955 {
956 ++imax;
957 }
958
959 if( writePSDs )
960 {
961 tfreqHF.assign( tfreq.begin(), tfreq.end() );
962 }
963
964 tfreq.erase( tfreq.begin() + imax, tfreq.end() );
965
966 tPSDpPOL.resize( tfreq.size() ); // pre=allocate
967 //**>
968
969 std::vector<realT> tPSDn; // The open-loop WFS noise PSD
970 tPSDn.resize( tfreq.size() );
971
972 //**< Setup the controllers
974 tflp.m_precision0 = lpRegPrecision;
975
976 mx::AO::analysis::clGainOpt<realT> go_si( tauWFS, deltaTau );
977 mx::AO::analysis::clGainOpt<realT> go_lp( tauWFS, deltaTau );
978
979 go_si.f( tfreq );
980 go_lp.f( tfreq );
981
982 realT gmax = 0;
983 realT gmax_lp = 0;
984 //**>
985
986 int m, n;
987
988 //**< For use in lifetime calculations
990 std::vector<std::complex<realT>> ETFxn;
991 std::vector<std::complex<realT>> NTFxn;
992
993 if( lifetimeTrials > 0 )
994 {
995 ETFxn.resize( tfreq.size() );
996 NTFxn.resize( tfreq.size() );
997
998 if( writeXfer )
999 {
1000 std::string tfOutFile = dir + "/" + "outputTF_" + ioutils::convertToString( mags[s] ) + "_si/";
1001 ioutils::createDirectories( tfOutFile );
1002 }
1003
1004 if( doLP )
1005 {
1006 if( writeXfer )
1007 {
1008 std::string tfOutFile = dir + "/" + "outputTF_" + ioutils::convertToString( mags[s] ) + "_lp/";
1009 ioutils::createDirectories( tfOutFile );
1010 }
1011 }
1012 }
1013
1014//**>
1015
1016/*#pragma omp critical
1017std::cerr << __FILE__ << " " << __LINE__ << "\n";
1018*/
1019// want to schedule dynamic with small chunks so maximal processor usage,
1020// otherwise we can end up with a small number of cores being used at the end
1021#pragma omp for schedule( dynamic, 5 )
1022 for( size_t i = 0; i < nModes; ++i )
1023 {
1024 // Determine the spatial frequency at this step
1025 m = fms[2 * i].m;
1026 n = fms[2 * i].n;
1027
1028 if( fabs( (realT)m / m_aosys->D() ) >= m_aosys->spatialFilter_ku() ||
1029 fabs( (realT)n / m_aosys->D() ) >= m_aosys->spatialFilter_kv() )
1030 {
1031 gains( mnMax + m, mnMax + n ) = 0;
1032 gains( mnMax - m, mnMax - n ) = 0;
1033
1034 gains_lp( mnMax + m, mnMax + n ) = 0;
1035 gains_lp( mnMax - m, mnMax - n ) = 0;
1036
1037 vars( mnMax + m, mnMax + n ) = 0;
1038 vars( mnMax - m, mnMax - n ) = 0;
1039
1040 vars_lp( mnMax + m, mnMax + n ) = 0;
1041 vars_lp( mnMax - m, mnMax - n ) = 0;
1042 speckleLifetimes( mnMax + m, mnMax + n ) = 0;
1043 speckleLifetimes( mnMax - m, mnMax - n ) = 0;
1044 speckleLifetimes_lp( mnMax + m, mnMax + n ) = 0;
1045 speckleLifetimes_lp( mnMax - m, mnMax - n ) = 0;
1046 }
1047 else
1048 {
1049
1050 realT k = sqrt( m * m + n * n ) / m_aosys->D();
1051
1052 //**< Get the open-loop turb. PSD
1053 getGridPSD( tPSDp, psdDir, m, n );
1054
1055 // Get integral of entire open-loop PSD
1056 var0 = sigproc::psdVar( tfreq, tPSDp );
1057
1058 if( writePSDs )
1059 {
1060 tPSDpHF.assign( tPSDp.begin() + imax, tPSDp.end() );
1061 }
1062
1063 // erase points above Nyquist limit
1064 tPSDp.erase( tPSDp.begin() + imax, tPSDp.end() );
1065
1066 // And now determine the variance which has been erased.
1067 // limVar is the out-of-band variance, which we add back in for completeness
1068 realT limVar = 0; // var0 - sigproc::psdVar( tfreq, tPSDp);
1069
1070 // And construct the POL psd
1071 if( m_uncorrectedOG )
1072 {
1073 for( size_t n = 0; n < tPSDp.size(); ++n )
1074 {
1075 tPSDpPOL[n] = tPSDp[n] * pow( opticalGain, 2 );
1076 }
1077 }
1078 else
1079 {
1080 for( size_t n = 0; n < tPSDp.size(); ++n )
1081 {
1082 tPSDpPOL[n] = tPSDp[n];
1083 }
1084 }
1085 //**>
1086
1087 //**< Determine if we're inside the hardwarecontrol limit
1088 bool inside = false;
1089
1090 if( m_aosys->circularLimit() )
1091 {
1092 if( m * m + n * n <= mnCon * mnCon )
1093 inside = true;
1094 }
1095 else
1096 {
1097 if( fabs( m ) <= mnCon && fabs( n ) <= mnCon )
1098 inside = true;
1099 }
1100 //**>
1101
1102 /* This is to select specific points for troubleshooting*/
1103 // if( !( ( m ==-2 && n == 84 ) || (m==-2 && n == 2800)) ) inside = false;
1104
1105 if( inside )
1106 {
1107 // Get the WFS noise PSD (which is already resized to match tfreq)
1108 wfsNoisePSD<realT>( tPSDn,
1109 m_aosys->beta_p( m, n ) / sqrt( opticalGain ),
1110 m_aosys->Fg( localMag ),
1111 tauWFS,
1112 m_aosys->npix_wfs( (size_t)0 ),
1113 m_aosys->Fbg( (size_t)0 ),
1114 m_aosys->ron_wfs( (size_t)0 ) );
1115
1116 gmax = 0;
1117 if( gfixed > 0 )
1118 {
1119 gopt = gfixed;
1120 var = go_si.clVariance( tPSDp, tPSDn, gopt );
1121 }
1122 else
1123 {
1124 // Calculate gain using the POL PSD
1125 gopt = go_si.optGainOpenLoop( var, tPSDpPOL, tPSDn, gmax, true );
1126
1127 if( m_uncorrectedOG )
1128 {
1129 gopt *= opticalGain;
1130 }
1131
1132 // But use the variance from the actual POL
1133 var = go_si.clVariance( tPSDp, tPSDn, gopt );
1134
1135 // Output gain curve for this mode (for troubleshooting)
1136 /*#pragma omp critical
1137 {
1138 std::string foutn = "gcurve_";
1139 foutn += std::to_string(m) + "_" + std::to_string(n) + ".dat";
1140
1141 std::ofstream foutf(foutn);
1142
1143 for(size_t n = 0; n < 10000; ++n)
1144 {
1145 realT gg = (1.0*n)/10000.;
1146 foutf << gg << " " << go_si.clVariance(tPSDp, tPSDn, gg) << "\n";
1147 }
1148
1149 foutf.close();
1150
1151 std::cerr << "\n" << gmax << " " << gopt << " " << var << " " << go_si.clVariance(tPSDp,
1152 tPSDn, 0.64) << "\n";
1153 }*/
1154 }
1155
1156 var += limVar;
1157
1158 if( doLP )
1159 {
1160
1161 tflp.regularizeCoefficients( gmax_lp, gopt_lp, var_lp, go_lp, tPSDpPOL, tPSDn, lpNc );
1162
1163 for( int n = 0; n < lpNc; ++n )
1164 {
1165 lpC( i, n ) = go_lp.a( n );
1166 }
1167 if( m_uncorrectedOG )
1168 {
1169 go_lp.aScale( opticalGain );
1170 go_lp.bScale( opticalGain );
1171 gopt_lp *= opticalGain;
1172 }
1173
1174 var_lp = go_lp.clVariance( tPSDp, tPSDn, gopt_lp );
1175 var_lp += limVar;
1176 }
1177 else
1178 {
1179 gopt_lp = 0;
1180 }
1181 }
1182 else
1183 {
1184 // Zero the noise PSD
1185 tPSDn.assign( tPSDn.size(), 0.0 );
1186
1187 gopt = 0;
1188 var = var0;
1189 var_lp = var0;
1190 gopt_lp = 0;
1191 go_lp.a( std::vector<realT>( { 1 } ) );
1192 go_lp.b( std::vector<realT>( { 1 } ) );
1193 }
1194
1195 //**< Determine if closed-loop is making a difference:
1196
1197 if( gopt > 0 && var > var0 )
1198 {
1199 gopt = 0;
1200 var = var0;
1201 }
1202
1203 if( gopt_lp > 0 && var_lp > var0 )
1204 {
1205 gopt_lp = 0;
1206 var_lp = var0;
1207 }
1208 //**>
1209
1210 //**< Fill in the gain and variance maps
1211 gains( mnMax + m, mnMax + n ) = gopt;
1212 gains( mnMax - m, mnMax - n ) = gopt;
1213
1214 gains_lp( mnMax + m, mnMax + n ) = gopt_lp;
1215 gains_lp( mnMax - m, mnMax - n ) = gopt_lp;
1216
1217 vars( mnMax + m, mnMax + n ) = var;
1218 vars( mnMax - m, mnMax - n ) = var;
1219
1220 vars_lp( mnMax + m, mnMax + n ) = var_lp;
1221 vars_lp( mnMax - m, mnMax - n ) = var_lp;
1222 //**>
1223
1224 //**< Calculate Speckle Lifetimes
1225 if( ( lifetimeTrials > 0 || writeXfer ) && ( uncontrolledLifetimes || inside ) )
1226 {
1227 std::vector<realT> spfreq, sppsd;
1228
1229 if( gopt > 0 )
1230 {
1231 for( size_t i = 0; i < tfreq.size(); ++i )
1232 {
1233 ETFxn[i] = go_si.clETF( i, gopt );
1234 NTFxn[i] = go_si.clNTF( i, gopt );
1235 }
1236 }
1237 else
1238 {
1239 for( size_t i = 0; i < tfreq.size(); ++i )
1240 {
1241 ETFxn[i] = 1;
1242 NTFxn[i] = 0;
1243 }
1244 }
1245
1246 if( writeXfer )
1247 {
1248 std::string tfOutFile =
1249 dir + "/" + "outputTF_" + ioutils::convertToString( mags[s] ) + "_si/";
1250
1251 std::string etfOutFile = tfOutFile + "etf_" + ioutils::convertToString( m ) + '_' +
1252 ioutils::convertToString( n ) + ".binv";
1253 ioutils::writeBinVector( etfOutFile, ETFxn );
1254
1255 std::string ntfOutFile = tfOutFile + "ntf_" + ioutils::convertToString( m ) + '_' +
1256 ioutils::convertToString( n ) + ".binv";
1257 ioutils::writeBinVector( ntfOutFile, NTFxn );
1258
1259 if( i == 0 ) // Write freq on the first one
1260 {
1261 std::string fOutFile = tfOutFile + "freq.binv";
1262 ioutils::writeBinVector( fOutFile, tfreq );
1263 }
1264 }
1265
1266 if( lifetimeTrials > 0 )
1267 {
1268 speckleAmpPSD( spfreq, sppsd, tfreq, tPSDp, ETFxn, tPSDn, NTFxn, lifetimeTrials );
1269 realT spvar = sigproc::psdVar( spfreq, sppsd );
1270
1271 realT splifeT = 100.0;
1272 realT error;
1273
1274 realT tau = pvm( error, spfreq, sppsd, splifeT ) * ( splifeT ) / spvar;
1275
1276 speckleLifetimes( mnMax + m, mnMax + n ) = tau;
1277 speckleLifetimes( mnMax - m, mnMax - n ) = tau;
1278 }
1279
1280 if( doLP )
1281 {
1282 if( gopt_lp > 0 )
1283 {
1284 for( size_t i = 0; i < tfreq.size(); ++i )
1285 {
1286 ETFxn[i] = go_lp.clETF( i, gopt_lp );
1287 NTFxn[i] = go_lp.clNTF( i, gopt_lp );
1288 }
1289 }
1290 else
1291 {
1292 for( size_t i = 0; i < tfreq.size(); ++i )
1293 {
1294 ETFxn[i] = 1;
1295 NTFxn[i] = 0;
1296 }
1297 }
1298
1299 if( writeXfer )
1300 {
1301 std::string tfOutFile =
1302 dir + "/" + "outputTF_" + ioutils::convertToString( mags[s] ) + "_lp/";
1303
1304 std::string etfOutFile = tfOutFile + "etf_" + ioutils::convertToString( m ) + '_' +
1305 ioutils::convertToString( n ) + ".binv";
1306 ioutils::writeBinVector( etfOutFile, ETFxn );
1307
1308 std::string ntfOutFile = tfOutFile + "ntf_" + ioutils::convertToString( m ) + '_' +
1309 ioutils::convertToString( n ) + ".binv";
1310 ioutils::writeBinVector( ntfOutFile, NTFxn );
1311
1312 if( i == 0 ) // Write freq on the first one
1313 {
1314 std::string fOutFile = tfOutFile + "freq.binv";
1315 ioutils::writeBinVector( fOutFile, tfreq );
1316 }
1317 }
1318
1319 if( lifetimeTrials > 0 )
1320 {
1321 speckleAmpPSD( spfreq, sppsd, tfreq, tPSDp, ETFxn, tPSDn, NTFxn, lifetimeTrials );
1322 realT spvar = sigproc::psdVar( spfreq, sppsd );
1323
1324 realT splifeT = 100.0;
1325 realT error;
1326
1327 realT tau = pvm( error, spfreq, sppsd, splifeT ) * ( splifeT ) / spvar;
1328
1329 speckleLifetimes_lp( mnMax + m, mnMax + n ) = tau;
1330 speckleLifetimes_lp( mnMax - m, mnMax - n ) = tau;
1331 }
1332 } // if(doLP)
1333 } // if( (lifetimeTrials > 0 || writeXfer) && ( uncontrolledLifetimes || inside ))
1334 //**>
1335
1336 // Calculate the controlled PSDs and output
1337 if( writePSDs )
1338 {
1339 std::string psdOutFile =
1340 dir + "/" + "outputPSDs_" + ioutils::convertToString( mags[s] ) + "_si/";
1341 psdOutFile +=
1342 "psd_" + ioutils::convertToString( m ) + '_' + ioutils::convertToString( n ) + ".binv";
1343
1344 std::vector<realT> psdOut( tPSDp.size() + tPSDpHF.size() );
1345
1346 // Calculate the output PSD if gains are applied
1347 if( gopt > 0 )
1348 {
1349 realT ETF, NTF;
1350
1351 for( size_t i = 0; i < tfreq.size(); ++i )
1352 {
1353 go_si.clTF2( ETF, NTF, i, gopt );
1354 psdOut[i] = tPSDp[i] * ETF + tPSDn[i] * NTF;
1355 }
1356
1357 for( size_t i = 0; i < tPSDpHF.size(); ++i )
1358 {
1359 psdOut[tfreq.size() + i] = tPSDpHF[i];
1360 }
1361 }
1362 else // otherwise just copy
1363 {
1364 for( size_t i = 0; i < tfreq.size(); ++i )
1365 {
1366 psdOut[i] = tPSDp[i];
1367 }
1368
1369 for( size_t i = 0; i < tPSDpHF.size(); ++i )
1370 {
1371 psdOut[tfreq.size() + i] = tPSDpHF[i];
1372 }
1373 }
1374
1375 ioutils::writeBinVector( psdOutFile, psdOut );
1376
1377 if( i == 0 ) // Write freq on the first one
1378 {
1379 psdOutFile =
1380 dir + "/" + "outputPSDs_" + ioutils::convertToString( mags[s] ) + "_si/freq.binv";
1381 ioutils::writeBinVector( psdOutFile, tfreqHF );
1382 }
1383
1384 if( doLP )
1385 {
1386 psdOutFile = dir + "/" + "outputPSDs_" + ioutils::convertToString( mags[s] ) + "_lp/";
1387 psdOutFile +=
1388 "psd_" + ioutils::convertToString( m ) + '_' + ioutils::convertToString( n ) + ".binv";
1389
1390 // Calculate the output PSD if gains are applied
1391 if( gopt_lp > 0 )
1392 {
1393 realT ETF, NTF;
1394
1395 for( size_t i = 0; i < tfreq.size(); ++i )
1396 {
1397 go_lp.clTF2( ETF, NTF, i, gopt_lp );
1398 psdOut[i] = tPSDp[i] * ETF + tPSDn[i] * NTF;
1399 }
1400 for( size_t i = 0; i < tPSDpHF.size(); ++i )
1401 {
1402 psdOut[tfreq.size() + i] = tPSDpHF[i];
1403 }
1404 }
1405 else // otherwise just copy
1406 {
1407 for( size_t i = 0; i < tfreq.size(); ++i )
1408 {
1409 psdOut[i] = tPSDp[i];
1410 }
1411
1412 for( size_t i = 0; i < tPSDpHF.size(); ++i )
1413 {
1414 psdOut[tfreq.size() + i] = tPSDpHF[i];
1415 }
1416 }
1417
1418 ioutils::writeBinVector( psdOutFile, psdOut );
1419
1420 if( i == 0 )
1421 {
1422 psdOutFile =
1423 dir + "/" + "outputPSDs_" + ioutils::convertToString( mags[s] ) + "_lp/freq.binv";
1424 ioutils::writeBinVector( psdOutFile, tfreq );
1425 }
1426 }
1427 }
1428 }
1429 watcher.incrementAndOutputStatus();
1430
1431 } // omp for i..nModes
1432 } // omp Parallel
1433
1434 Eigen::Array<realT, -1, -1> cim;
1435
1437 std::string fn = dir + "/gainmap_" + ioutils::convertToString( mags[s] ) + "_si.fits";
1438 ff.write( fn, gains );
1439
1440 fn = dir + "/varmap_" + ioutils::convertToString( mags[s] ) + "_si.fits";
1441 ff.write( fn, vars );
1442
1443 cim = vars;
1444
1445 realT Ssi = exp( -1 * cim.sum() );
1446 S_si.push_back( strehl );
1447 cim /= strehl;
1448
1449 fn = dir + "/contrast_" + ioutils::convertToString( mags[s] ) + "_si.fits";
1450 ff.write( fn, cim );
1451
1452 if( lifetimeTrials > 0 )
1453 {
1454 fn = dir + "/speckleLifetimes_" + ioutils::convertToString( mags[s] ) + "_si.fits";
1455 ff.write( fn, speckleLifetimes );
1456 }
1457
1458 if( doLP )
1459 {
1460 fn = dir + "/gainmap_" + ioutils::convertToString( mags[s] ) + "_lp.fits";
1461 ff.write( fn, gains_lp );
1462
1463 fn = dir + "/lpcmap_" + ioutils::convertToString( mags[s] ) + "_lp.fits";
1464 ff.write( fn, lpC );
1465
1466 fn = dir + "/varmap_" + ioutils::convertToString( mags[s] ) + "_lp.fits";
1467 ff.write( fn, vars_lp );
1468
1469 cim = vars_lp;
1470
1471 // Scale Strehl by the ratio of total variance
1472 realT Slp = strehl * exp( -1 * cim.sum() ) /
1473 Ssi; // This is a hack until we do a real fitting error calculation or something
1474 S_lp.push_back( Slp );
1475 cim /= Slp;
1476
1477 fn = dir + "/contrast_" + ioutils::convertToString( mags[s] ) + "_lp.fits";
1478 ff.write( fn, cim );
1479
1480 if( lifetimeTrials > 0 )
1481 {
1482 fn = dir + "/speckleLifetimes_" + ioutils::convertToString( mags[s] ) + "_lp.fits";
1483 ff.write( fn, speckleLifetimes_lp );
1484 }
1485 }
1486
1487 } // s (mag)
1488
1489 fn = dir + "/strehl_si.txt";
1490 fout.open( fn );
1491 for( size_t i = 0; i < mags.size(); ++i )
1492 {
1493 fout << mags[i] << " " << S_si[i] << "\n";
1494 }
1495
1496 fout.close();
1497
1498 if( doLP )
1499 {
1500 fn = dir + "/strehl_lp.txt";
1501 fout.open( fn );
1502 for( size_t i = 0; i < mags.size(); ++i )
1503 {
1504 fout << mags[i] << " " << S_lp[i] << "\n";
1505 }
1506
1507 fout.close();
1508 }
1509
1510 return 0;
1511}
1512
1513template <typename realT, typename aosysT>
1515 const std::string &subDir, // sub-directory of psdDir which contains the controlled system results, and where the
1516 // lifetimes will be written.
1517 const std::string &psdDir, // directory containing the PSDS
1518 const std::string &CvdPath, // path to the covariance decomposition
1519 int mnMax,
1520 int mnCon,
1521 const std::string &si_or_lp,
1522 std::vector<realT> &mags,
1523 int lifetimeTrials,
1524 bool writePSDs )
1525{
1526
1527 std::string dir = psdDir + "/" + subDir;
1528
1529 /*** Dump Params to file ***/
1530 mkdir( dir.c_str(), S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH );
1531
1532 std::ofstream fout;
1533 std::string fn = dir + '/' + "splife_params.txt";
1534 fout.open( fn );
1535
1536 fout << "#---------------------------\n";
1537 m_aosys->dumpAOSystem( fout );
1538 fout << "#---------------------------\n";
1539 fout << "# Analysis Parameters\n";
1540 fout << "# mnMax = " << mnMax << '\n';
1541 fout << "# mnCon = " << mnCon << '\n';
1542 fout << "# mags = ";
1543 for( size_t i = 0; i < mags.size() - 1; ++i )
1544 fout << mags[i] << ",";
1545 fout << mags[mags.size() - 1] << '\n';
1546 fout << "# lifetimeTrials = " << lifetimeTrials << '\n';
1547 // fout << "# uncontrolledLifetimes = " << uncontrolledLifetimes << '\n';
1548 fout << "# writePSDs = " << std::boolalpha << writePSDs << '\n';
1549
1550 fout.close();
1551
1552 realT fs = 1.0 / m_aosys->tauWFS();
1553 realT tauWFS = m_aosys->tauWFS();
1554 realT deltaTau = m_aosys->deltaTau();
1555
1556 //** Get the Fourier Grid
1557 std::vector<sigproc::fourierModeDef> fms;
1558
1559 sigproc::makeFourierModeFreqs_Rect( fms, 2 * mnMax );
1560 size_t nModes = 0.5 * fms.size();
1561 std::cerr << "nModes: " << nModes << " (" << fms.size() << ")\n";
1562
1563 Eigen::Array<realT, -1, -1> speckleLifetimes;
1564 Eigen::Array<realT, -1, -1> speckleLifetimes_lp;
1565
1566 speckleLifetimes.resize( 2 * mnMax + 1, 2 * mnMax + 1 );
1567 speckleLifetimes( mnMax, mnMax ) = 0;
1568
1569 speckleLifetimes_lp.resize( 2 * mnMax + 1, 2 * mnMax + 1 );
1570 speckleLifetimes_lp( mnMax, mnMax ) = 0;
1571
1572 /*********************************************************************/
1573 // 0) Get the frequency grid, and nyquist limit it to f_s/2
1574 /*********************************************************************/
1575
1576 std::vector<realT> tfreq;
1577 std::vector<realT> tPSDp; // The open-loop OPD PSD
1578 std::vector<realT> tPSDn; // The open-loop WFS noise PSD
1579 std::vector<complexT> tETF;
1580 std::vector<complexT> tNTF;
1581
1582 if( getGridFreq( tfreq, psdDir ) < 0 )
1583 return -1;
1584
1585 size_t imax = 0;
1586 while( tfreq[imax] <= 0.5 * fs )
1587 {
1588 ++imax;
1589 if( imax > tfreq.size() - 1 )
1590 break;
1591 }
1592
1593 if( imax < tfreq.size() - 1 && tfreq[imax] <= 0.5 * fs * ( 1.0 + 1e-7 ) )
1594 ++imax;
1595
1596 tfreq.erase( tfreq.begin() + imax, tfreq.end() );
1597
1598 // Now allocate memory
1599 tPSDn.resize( tfreq.size() );
1600 std::vector<std::vector<realT>> sqrtOPDPSD;
1601 sqrtOPDPSD.resize( nModes );
1602
1603 std::vector<std::vector<realT>> opdPSD;
1604 opdPSD.resize( nModes );
1605
1606 std::vector<realT> psd2sided;
1607
1608 // Store the mode variance for later normalization
1609 std::vector<realT> modeVar;
1610 modeVar.resize( nModes );
1611
1612 /*********************************************************************/
1613 // 1) Read in each PSD, and load it into the array in FFT order
1614 /*********************************************************************/
1615
1616 for( size_t i = 0; i < nModes; ++i )
1617 {
1618 // Determine the spatial frequency at this step
1619 int m = fms[2 * i].m;
1620 int n = fms[2 * i].n;
1621
1622 //**< Get the open-loop turb. PSD
1623 if( getGridPSD( tPSDp, psdDir, m, n ) < 0 )
1624 return -1;
1625 tPSDp.erase( tPSDp.begin() + imax, tPSDp.end() ); // Nyquist limit
1626 modeVar[i] = sigproc::psdVar( tfreq, tPSDp );
1627
1628 // And now normalize
1629 sigproc::normPSD( tPSDp, tfreq, 1.0 ); // Normalize
1630 sigproc::augment1SidedPSD( psd2sided, tPSDp, !( tfreq[0] == 0 ) ); // Convert to FFT storage order
1631
1632 opdPSD[i].resize( psd2sided.size() );
1633 sqrtOPDPSD[i].resize( psd2sided.size() );
1634
1635 for( size_t j = 0; j < psd2sided.size(); ++j )
1636 {
1637 opdPSD[i][j] = psd2sided[j] * modeVar[i];
1638 sqrtOPDPSD[i][j] = sqrt( psd2sided[j] ); // Store the square-root for later
1639 }
1640 }
1641
1642 size_t sz2Sided = psd2sided.size();
1643
1644 std::vector<realT> freq2sided;
1645 freq2sided.resize( sz2Sided );
1646 sigproc::augment1SidedPSDFreq( freq2sided, tfreq );
1647
1648 tPSDp.resize( tfreq.size() );
1649 tETF.resize( tfreq.size() );
1650 tNTF.resize( tfreq.size() );
1651
1652 std::vector<std::vector<realT>> sqrtNPSD;
1653 sqrtNPSD.resize( nModes );
1654
1655 std::vector<realT> noiseVar;
1656 noiseVar.resize( nModes );
1657
1658 std::vector<std::vector<complexT>> ETFsi;
1659 std::vector<std::vector<complexT>> ETFlp;
1660 ETFsi.resize( nModes );
1661 ETFlp.resize( nModes );
1662
1663 std::vector<std::vector<complexT>> NTFsi;
1664 std::vector<std::vector<complexT>> NTFlp;
1665 NTFsi.resize( nModes );
1666 NTFlp.resize( nModes );
1667
1668 std::string tfInFile;
1669 std::string etfInFile;
1670 std::string ntfInFile;
1671
1674 ff.read( Cvd, CvdPath );
1675
1676 std::vector<std::complex<realT>> tPSDc, psd2sidedc;
1677
1678 /*********************************************************************/
1679 // 2) Analyze each star magnitude
1680 /*********************************************************************/
1681 ipc::ompLoopWatcher<> watcher( lifetimeTrials * mags.size(), std::cout );
1682 for( size_t s = 0; s < mags.size(); ++s )
1683 {
1684 /*********************************************************************/
1685 // 2.0) Read in the transfer functions for each mode
1686 /*********************************************************************/
1687 for( size_t i = 0; i < nModes; ++i )
1688 {
1689 // Determine the spatial frequency at this step
1690 int m = fms[2 * i].m;
1691 int n = fms[2 * i].n;
1692
1693 //**< Determine if we're inside the hardwarecontrol limit
1694 bool inside = false;
1695
1696 if( m_aosys->circularLimit() )
1697 {
1698 if( m * m + n * n <= mnCon * mnCon )
1699 inside = true;
1700 }
1701 else
1702 {
1703 if( fabs( m ) <= mnCon && fabs( n ) <= mnCon )
1704 inside = true;
1705 }
1706
1707 // Get the WFS noise PSD (which is already resized to match tfreq)
1708 wfsNoisePSD<realT>( tPSDn,
1709 m_aosys->beta_p( m, n ),
1710 m_aosys->Fg( mags[s] ),
1711 tauWFS,
1712 m_aosys->npix_wfs( (size_t)0 ),
1713 m_aosys->Fbg( (size_t)0 ),
1714 m_aosys->ron_wfs( (size_t)0 ) );
1715 sigproc::augment1SidedPSD( psd2sided, tPSDn, !( tfreq[0] == 0 ) ); // Convert to FFT storage order
1716
1717 // Pre-calculate the variance of the noise for later use
1718 noiseVar[i] = sigproc::psdVar( tfreq, tPSDn );
1719
1720 sqrtNPSD[i].resize( psd2sided.size() );
1721 for( size_t j = 0; j < psd2sided.size(); ++j )
1722 sqrtNPSD[i][j] = sqrt( psd2sided[j] );
1723
1724 ETFsi[i].resize( sz2Sided );
1725 ETFlp[i].resize( sz2Sided );
1726 NTFsi[i].resize( sz2Sided );
1727 NTFlp[i].resize( sz2Sided );
1728
1729 if( inside )
1730 {
1731 tfInFile = dir + "/" + "outputTF_" + ioutils::convertToString( mags[s] ) + "_si/";
1732
1733 etfInFile =
1734 tfInFile + "etf_" + ioutils::convertToString( m ) + '_' + ioutils::convertToString( n ) + ".binv";
1735 ioutils::readBinVector( tPSDc, etfInFile );
1736 sigproc::augment1SidedPSD( psd2sidedc, tPSDc, !( tfreq[0] == 0 ), 1 ); // Convert to FFT storage order
1737 for( size_t j = 0; j < psd2sidedc.size(); ++j )
1738 ETFsi[i][j] = psd2sidedc[j];
1739
1740 ntfInFile =
1741 tfInFile + "ntf_" + ioutils::convertToString( m ) + '_' + ioutils::convertToString( n ) + ".binv";
1742 ioutils::readBinVector( tPSDc, ntfInFile );
1743 sigproc::augment1SidedPSD( psd2sidedc, tPSDc, !( tfreq[0] == 0 ), 1 ); // Convert to FFT storage order
1744 for( size_t j = 0; j < psd2sidedc.size(); ++j )
1745 NTFsi[i][j] = psd2sidedc[j];
1746
1747 tfInFile = dir + "/" + "outputTF_" + ioutils::convertToString( mags[s] ) + "_lp/";
1748
1749 etfInFile =
1750 tfInFile + "etf_" + ioutils::convertToString( m ) + '_' + ioutils::convertToString( n ) + ".binv";
1751 ioutils::readBinVector( tPSDc, etfInFile );
1752 sigproc::augment1SidedPSD( psd2sidedc, tPSDc, !( tfreq[0] == 0 ), 1 ); // Convert to FFT storage order
1753 for( size_t j = 0; j < psd2sidedc.size(); ++j )
1754 ETFlp[i][j] = psd2sidedc[j];
1755
1756 ntfInFile =
1757 tfInFile + "ntf_" + ioutils::convertToString( m ) + '_' + ioutils::convertToString( n ) + ".binv";
1758 ioutils::readBinVector( tPSDc, ntfInFile );
1759 sigproc::augment1SidedPSD( psd2sidedc, tPSDc, !( tfreq[0] == 0 ), 1 ); // Convert to FFT storage order
1760 for( size_t j = 0; j < psd2sidedc.size(); ++j )
1761 NTFlp[i][j] = psd2sidedc[j];
1762 }
1763 else
1764 {
1765 for( int q = 0; q < ETFsi.size(); ++q )
1766 {
1767 ETFsi[i][q] = 1;
1768 NTFsi[i][q] = 0;
1769 ETFlp[i][q] = 1;
1770 NTFlp[i][q] = 0;
1771 }
1772 }
1773 }
1774
1776 sz2Sided / 1., 1 / fs ); // this is just to get the size right, per-thread instances below
1777 std::vector<std::vector<realT>> spPSDs;
1778 spPSDs.resize( nModes );
1779 for( size_t pp = 0; pp < spPSDs.size(); ++pp )
1780 {
1781 spPSDs[pp].resize( tavgPgram.size() );
1782 for( size_t nn = 0; nn < spPSDs[pp].size(); ++nn )
1783 spPSDs[pp][nn] = 0;
1784 }
1785
1786 std::vector<std::vector<realT>> spPSDslp;
1787 spPSDslp.resize( nModes );
1788 for( size_t pp = 0; pp < spPSDslp.size(); ++pp )
1789 {
1790 spPSDslp[pp].resize( tavgPgram.size() );
1791 for( size_t nn = 0; nn < spPSDslp[pp].size(); ++nn )
1792 spPSDslp[pp][nn] = 0;
1793 }
1794
1795#pragma omp parallel
1796 {
1797 // Normally distributed random numbers
1798 math::normDistT<realT> normVar;
1799 normVar.seed();
1800
1801 // FFTs for going to Fourier domain and back to time domain.
1802 math::ft::fftT<realT, std::complex<realT>, 1, 0> fftF( sqrtOPDPSD[0].size() );
1803 math::ft::fftT<std::complex<realT>, realT, 1, 0> fftB( sqrtOPDPSD[0].size(), math::ft::dir::backward );
1804
1805 // Working memory
1806 std::vector<std::complex<realT>> tform1( sqrtOPDPSD[0].size() );
1807 std::vector<std::complex<realT>> tform2( sqrtOPDPSD[0].size() );
1808 std::vector<std::complex<realT>> Ntform1( sqrtOPDPSD[0].size() );
1809 std::vector<std::complex<realT>> Ntform2( sqrtOPDPSD[0].size() );
1810
1811 std::vector<std::complex<realT>> tform1lp( sqrtOPDPSD[0].size() );
1812 std::vector<std::complex<realT>> tform2lp( sqrtOPDPSD[0].size() );
1813 std::vector<std::complex<realT>> Ntform1lp( sqrtOPDPSD[0].size() );
1814 std::vector<std::complex<realT>> Ntform2lp( sqrtOPDPSD[0].size() );
1815
1816 // OPD-PSD filter
1817 sigproc::psdFilter<realT, 1> pfilt;
1818 pfilt.psdSqrt( &sqrtOPDPSD[0], tfreq[1] - tfreq[0] ); // Pre-configure
1819
1820 // Noise-PSD filter
1821 sigproc::psdFilter<realT, 1> nfilt;
1822 nfilt.psdSqrt( &sqrtNPSD[0], tfreq[1] - tfreq[0] ); // Pre-configure
1823
1824 // The h time-series
1825 std::vector<std::vector<realT>> hts;
1826 hts.resize( 2 * nModes );
1827
1828 // The correlated h time-series
1829 std::vector<std::vector<realT>> htsCorr;
1830 htsCorr.resize( 2 * nModes );
1831
1832 for( size_t pp = 0; pp < hts.size(); ++pp )
1833 {
1834 hts[pp].resize( sqrtOPDPSD[0].size() );
1835 htsCorr[pp].resize( sqrtOPDPSD[0].size() );
1836 }
1837
1838 // The noise time-serieses
1839 std::vector<realT> N_n;
1840 N_n.resize( sz2Sided );
1841
1842 std::vector<realT> N_nm;
1843 N_nm.resize( sz2Sided );
1844
1845 // Periodogram averager
1846 sigproc::averagePeriodogram<realT> avgPgram( sz2Sided / 1., 1 / fs ); //, 0, 1);
1847 avgPgram.win( sigproc::window::hann );
1848
1849 // The periodogram output
1850 std::vector<realT> tpgram( avgPgram.size() );
1851
1852 // Holds the speckle time-series
1854 spTS.resize( 2 * mnMax + 1, 2 * mnMax + 1, tform1.size() );
1855
1857 spTSlp.resize( 2 * mnMax + 1, 2 * mnMax + 1, tform1.size() );
1858
1859// Here's where the big loop of n-trials should start
1860#pragma omp for
1861 for( int zz = 0; zz < lifetimeTrials; ++zz )
1862 {
1863 std::complex<realT> scale = exp( std::complex<realT>( 0, math::half_pi<realT>() ) ) /
1864 std::complex<realT>( ( tform1.size() ), 0 );
1865
1866 /*********************************************************************/
1867 // 2.1) Generate filtered noise for each mode, with temporal phase shifts at each spatial frequency
1868 /*********************************************************************/
1869 for( size_t pp = 0; pp < nModes; ++pp )
1870 {
1871 // Fill in standard normal noise
1872 for( size_t nn = 0; nn < hts[2 * pp].size(); ++nn )
1873 {
1874 hts[2 * pp][nn] = normVar;
1875 }
1876
1877 // Set sqrt(PSD), just a pointer switch
1878 pfilt.psdSqrt( &sqrtOPDPSD[pp], tfreq[1] - tfreq[0] );
1879
1880 // And now filter the noise to a time-series of h
1881 pfilt( hts[2 * pp] );
1882
1883 /**/
1884 // Then construct 2nd mode with temporal shift
1885 fftF( tform1.data(), hts[2 * pp].data() );
1886
1887 // Apply the phase shift to form the 2nd time series
1888 for( size_t nn = 0; nn < hts[2 * pp].size(); ++nn )
1889 tform1[nn] = tform1[nn] * scale;
1890
1891 fftB( hts[2 * pp + 1].data(), tform1.data() );
1892 /**/
1893 }
1894 //** At this point we have correlated time-series, with the correct temporal PSD, but not yet spatially
1895 //correlated
1896
1897 /*********************************************************************/
1898 // 2.2) Correlate the time-series for each mode
1899 /*********************************************************************/
1900 // #pragma omp parallel for
1901 for( size_t pp = 0; pp < hts.size(); ++pp )
1902 {
1903 for( size_t nn = 0; nn < hts[0].size(); ++nn )
1904 {
1905 htsCorr[pp][nn] = 0;
1906 }
1907
1908 for( size_t qq = 0; qq <= pp; ++qq )
1909 {
1910 realT cvd = Cvd( qq, pp );
1911 realT *d1 = htsCorr[pp].data();
1912 realT *d2 = hts[qq].data();
1913 for( size_t nn = 0; nn < hts[0].size(); ++nn )
1914 {
1915 d1[nn] += d2[nn] * cvd;
1916 }
1917 }
1918 }
1919
1920 /*
1921 for(size_t pp=0; pp < hts.size(); ++pp)
1922 {
1923 for(size_t nn=0; nn< hts[0].size(); ++nn)
1924 {
1925 htsCorr[pp][nn] = hts[pp][nn];
1926 }
1927 }*/
1928
1929 /*********************************************************************/
1930 // 2.2.a) Re-normalize b/c the correlation step above does not result in correct variances
1931 ///\todo should be able to scale the covar by r0, and possibly D
1932 /*********************************************************************/
1933 for( size_t pp = 0; pp < nModes; ++pp )
1934 {
1935 math::vectorMeanSub( htsCorr[2 * pp] );
1936 math::vectorMeanSub( htsCorr[2 * pp + 1] );
1937
1938 realT var = math::vectorVariance( htsCorr[2 * pp] );
1939 realT norm = sqrt( modeVar[pp] / var );
1940 for( size_t nn = 0; nn < htsCorr[2 * pp].size(); ++nn )
1941 htsCorr[2 * pp][nn] *= norm;
1942
1943 var = math::vectorVariance( htsCorr[2 * pp + 1] );
1944 norm = sqrt( modeVar[pp] / var );
1945 for( size_t nn = 0; nn < htsCorr[2 * pp + 1].size(); ++nn )
1946 htsCorr[2 * pp + 1][nn] *= norm;
1947 }
1948
1949 scale = std::complex<realT>( tform1.size(), 0 );
1950
1951 /*********************************************************************/
1952 // 2.3) Generate speckle intensity time-series
1953 /*********************************************************************/
1954 for( size_t pp = 0; pp < nModes; ++pp )
1955 {
1956 // Now we take them back to the FD and apply the xfer
1957 // and add the noise
1958
1959 fftF( tform1.data(), htsCorr[2 * pp].data() );
1960 fftF( tform2.data(), htsCorr[2 * pp + 1].data() );
1961
1962 // Make some noise
1963 for( int nn = 0; nn < sz2Sided; ++nn )
1964 {
1965 N_n[nn] = normVar;
1966 N_nm[nn] = normVar;
1967 }
1968
1969 // Filter it
1970 // Set sqrt(PSD), just a pointer switch
1971 pfilt.psdSqrt( &sqrtNPSD[pp], tfreq[1] - tfreq[0] );
1972 nfilt.filter( N_n );
1973 nfilt.filter( N_nm );
1974
1975 // Normalize it
1976 realT Nactvar = 0.5 * ( math::vectorVariance( N_n ) + math::vectorVariance( N_nm ) );
1977 realT norm = sqrt( noiseVar[pp] / Nactvar );
1978 for( size_t q = 0; q < N_n.size(); ++q )
1979 N_n[q] *= norm;
1980 for( size_t q = 0; q < N_nm.size(); ++q )
1981 N_nm[q] *= norm;
1982
1983 // And move them to the Fourier domain
1984 fftF( Ntform1.data(), N_n.data() );
1985 fftF( Ntform2.data(), N_nm.data() );
1986
1987 // Apply the closed loop transfers
1988 for( size_t mm = 0; mm < tform1.size(); ++mm )
1989 {
1990 // Apply the augmented ETF to two time-series
1991 tform1lp[mm] = tform1[mm] * ETFlp[pp][mm] / scale;
1992 tform2lp[mm] = tform2[mm] * ETFlp[pp][mm] / scale;
1993
1994 Ntform1lp[mm] = Ntform1[mm] * NTFlp[pp][mm] / scale;
1995 Ntform2lp[mm] = Ntform2[mm] * NTFlp[pp][mm] / scale;
1996
1997 tform1[mm] *= ETFsi[pp][mm] / scale;
1998 tform2[mm] *= ETFsi[pp][mm] / scale;
1999
2000 Ntform1[mm] *= NTFsi[pp][mm] / scale;
2001 Ntform2[mm] *= NTFsi[pp][mm] / scale;
2002 }
2003
2004 // And make the speckle TS
2005 int m = fms[2 * pp].m;
2006 int n = fms[2 * pp].n;
2007
2008 //<<<<<<<<****** Transform back to the time domain.
2009 fftB( htsCorr[2 * pp].data(), tform1.data() );
2010 fftB( htsCorr[2 * pp + 1].data(), tform2.data() );
2011 fftB( N_n.data(), Ntform1.data() );
2012 fftB( N_nm.data(), Ntform2.data() );
2013
2014 for( int i = 0; i < hts[2 * pp].size(); ++i )
2015 {
2016 realT h1 = htsCorr[2 * pp][i] + N_n[i];
2017 realT h2 = htsCorr[2 * pp + 1][i] + N_nm[i];
2018
2019 spTS.image( i )( mnMax + m, mnMax + n ) = ( pow( h1, 2 ) + pow( h2, 2 ) );
2020 spTS.image( i )( mnMax - m, mnMax - n ) = spTS.image( i )( mnMax + m, mnMax + n );
2021 }
2022
2023 fftB( htsCorr[2 * pp].data(), tform1lp.data() );
2024 fftB( htsCorr[2 * pp + 1].data(), tform2lp.data() );
2025 fftB( N_n.data(), Ntform1lp.data() );
2026 fftB( N_nm.data(), Ntform2lp.data() );
2027
2028 for( int i = 0; i < hts[2 * pp].size(); ++i )
2029 {
2030 realT h1 = htsCorr[2 * pp][i] + N_n[i];
2031 realT h2 = htsCorr[2 * pp + 1][i] + N_nm[i];
2032
2033 spTSlp.image( i )( mnMax + m, mnMax + n ) = ( pow( h1, 2 ) + pow( h2, 2 ) );
2034 spTSlp.image( i )( mnMax - m, mnMax - n ) = spTSlp.image( i )( mnMax + m, mnMax + n );
2035 }
2036 }
2037
2038 /*********************************************************************/
2039 // 2.5) Calculate speckle PSD for each mode
2040 /*********************************************************************/
2041 std::vector<realT> speckAmp( spTS.planes() );
2042 std::vector<realT> speckAmplp( spTS.planes() );
2043
2044 for( size_t pp = 0; pp < nModes; ++pp )
2045 {
2046 int m = fms[2 * pp].m;
2047 int n = fms[2 * pp].n;
2048
2049 realT mn = 0;
2050 realT mnlp = 0;
2051 for( int i = 0; i < spTS.planes(); ++i )
2052 {
2053 speckAmp[i] = spTS.image( i )( mnMax + m, mnMax + n );
2054 speckAmplp[i] = spTSlp.image( i )( mnMax + m, mnMax + n );
2055
2056 mn += speckAmp[i];
2057 mnlp += speckAmplp[i];
2058 }
2059 mn /= speckAmp.size();
2060 mnlp /= speckAmplp.size();
2061
2062 // mean subtract
2063 for( int i = 0; i < speckAmp.size(); ++i )
2064 speckAmp[i] -= mn;
2065 for( int i = 0; i < speckAmplp.size(); ++i )
2066 speckAmplp[i] -= mnlp;
2067
2068 // Calculate PSD of the speckle amplitude
2069 avgPgram( tpgram, speckAmp );
2070 for( size_t nn = 0; nn < spPSDs[pp].size(); ++nn )
2071 spPSDs[pp][nn] += tpgram[nn];
2072
2073 avgPgram( tpgram, speckAmplp );
2074 for( size_t nn = 0; nn < spPSDslp[pp].size(); ++nn )
2075 spPSDslp[pp][nn] += tpgram[nn];
2076 }
2077
2078 watcher.incrementAndOutputStatus();
2079 } // for(int zz=0; zz<lifetimeTrials; ++zz)
2080 } // #pragma omp parallel
2081
2082 std::vector<realT> spFreq( spPSDs[0].size() );
2083 for( size_t nn = 0; nn < spFreq.size(); ++nn )
2084 spFreq[nn] = tavgPgram[nn];
2085
2086 improc::eigenImage<realT> taus, tauslp;
2087 taus.resize( 2 * mnMax + 1, 2 * mnMax + 1 );
2088 tauslp.resize( 2 * mnMax + 1, 2 * mnMax + 1 );
2089
2090 improc::eigenCube<realT> imc, imclp;
2091 std::vector<realT> clPSD;
2092
2093 if( writePSDs )
2094 {
2095 imc.resize( 2 * mnMax + 1, 2 * mnMax + 1, spPSDs[0].size() );
2096 imclp.resize( 2 * mnMax + 1, 2 * mnMax + 1, spPSDs[0].size() );
2097 clPSD.resize( sz2Sided );
2098 }
2099
2101 /*********************************************************************/
2102 // 3.0) Calculate lifetimes from the PSDs
2103 /*********************************************************************/
2104 for( size_t pp = 0; pp < nModes; ++pp )
2105 {
2106 spPSDs[pp][0] = spPSDs[pp][1]; // deal with under-estimated mean.
2107 spPSDslp[pp][0] = spPSDslp[pp][1]; // deal with under-estimated mean.
2108
2109 int m = fms[2 * pp].m;
2110 int n = fms[2 * pp].n;
2111
2112 realT var;
2113 if( writePSDs ) // Have to normalize the intensity for some reason if we want to use the PSDs
2114 {
2115 for( size_t nn = 0; nn < spPSDs[pp].size(); ++nn )
2116 {
2117 spPSDs[pp][nn] /= lifetimeTrials;
2118 }
2119
2120 for( size_t nn = 0; nn < sz2Sided; ++nn )
2121 {
2122 clPSD[nn] =
2123 opdPSD[pp][nn] * norm( ETFsi[pp][nn] ) + pow( sqrtNPSD[pp][nn], 2 ) * norm( NTFsi[pp][nn] );
2124 }
2125
2126 var = sigproc::psdVar( freq2sided, clPSD );
2127
2128 realT pvar = sigproc::psdVar( spFreq, spPSDs[pp] );
2129
2130 for( size_t nn = 0; nn < spPSDs[pp].size(); ++nn )
2131 {
2132 spPSDs[pp][nn] *= var / pvar;
2133 imc.image( nn )( mnMax + m, mnMax + n ) = spPSDs[pp][nn];
2134 imc.image( nn )( mnMax - m, mnMax - n ) = spPSDs[pp][nn];
2135 }
2136
2137 // lp
2138 for( size_t nn = 0; nn < spPSDslp[pp].size(); ++nn )
2139 {
2140 spPSDslp[pp][nn] /= lifetimeTrials;
2141 }
2142
2143 for( size_t nn = 0; nn < sz2Sided; ++nn )
2144 {
2145 clPSD[nn] =
2146 opdPSD[pp][nn] * norm( ETFlp[pp][nn] ) + pow( sqrtNPSD[pp][nn], 2 ) * norm( NTFlp[pp][nn] );
2147 }
2148
2149 var = sigproc::psdVar( freq2sided, clPSD );
2150
2151 pvar = sigproc::psdVar( spFreq, spPSDslp[pp] );
2152
2153 for( size_t nn = 0; nn < spPSDslp[pp].size(); ++nn )
2154 {
2155 spPSDslp[pp][nn] *= var / pvar;
2156 imclp.image( nn )( mnMax + m, mnMax + n ) = spPSDslp[pp][nn];
2157 imclp.image( nn )( mnMax - m, mnMax - n ) = spPSDslp[pp][nn];
2158 }
2159 }
2160
2161 var = sigproc::psdVar( spFreq, spPSDs[pp] );
2162
2163 realT T = ( 1.0 / ( spFreq[1] - spFreq[0] ) ) * 10;
2164 realT error;
2165 realT tau = pvm( error, spFreq, spPSDs[pp], T ) * ( T ) / var;
2166 taus( mnMax + m, mnMax + n ) = tau;
2167 taus( mnMax - m, mnMax - n ) = tau;
2168
2169 var = sigproc::psdVar( spFreq, spPSDslp[pp] );
2170
2171 tau = pvm( error, spFreq, spPSDslp[pp], T ) * ( T ) / var;
2172 tauslp( mnMax + m, mnMax + n ) = tau;
2173 tauslp( mnMax - m, mnMax - n ) = tau;
2174 }
2175
2176 /*********************************************************************/
2177 // 4.0) Write the results to disk
2178 /*********************************************************************/
2179 fn = dir + "/speckleLifetimes_" + ioutils::convertToString( mags[s] ) + "_si.fits";
2180 ff.write( fn, taus );
2181
2182 fn = dir + "/speckleLifetimes_" + ioutils::convertToString( mags[s] ) + "_lp.fits";
2183 ff.write( fn, tauslp );
2184
2185 if( writePSDs )
2186 {
2187 fn = dir + "/specklePSDs_" + ioutils::convertToString( mags[s] ) + "_si.fits";
2188 ff.write( fn, imc );
2189
2190 fn = dir + "/specklePSDs_" + ioutils::convertToString( mags[s] ) + "_lp.fits";
2191 ff.write( fn, imclp );
2192 }
2193
2194 } // mags
2195
2196 return 0;
2197}
2198
2199template <typename realT, typename aosysT>
2200int fourierTemporalPSD<realT, aosysT>::getGridFreq( std::vector<realT> &freq, const std::string &dir )
2201{
2202 std::string fn;
2203 fn = dir + "/psds/freq.binv";
2204 return ioutils::readBinVector( freq, fn );
2205}
2206
2207template <typename realT, typename aosysT>
2208int fourierTemporalPSD<realT, aosysT>::getGridPSD( std::vector<realT> &psd, const std::string &dir, int m, int n )
2209{
2210 std::string fn;
2211 fn = dir + "/psds/psd_" + ioutils::convertToString( m ) + '_' + ioutils::convertToString( n ) + ".binv";
2212 return ioutils::readBinVector( psd, fn );
2213}
2214
2215template <typename realT, typename aosysT>
2217 std::vector<realT> &freq, std::vector<realT> &psd, const std::string &dir, int m, int n )
2218{
2219 int rv = getGridFreq( freq, dir );
2220 if( rv < 0 )
2221 return rv;
2222
2223 return getGridPSD( psd, dir, m, n );
2224}
2225
2226/// Worker function for GSL Integration for the basic sin/cos Fourier modes.
2227/** \ingroup mxAOAnalytic
2228 */
2229template <typename realT, typename aosysT>
2230realT F_basic( realT kv, void *params )
2231{
2233
2234 realT f = Fp->m_f;
2235 realT v_wind = Fp->m_aosys->atm.layer_v_wind( Fp->_layer_i );
2236
2237 realT D = Fp->m_aosys->D();
2238 realT m = Fp->m_m;
2239 realT n = Fp->m_n;
2240 int p = Fp->m_p;
2241
2242 realT ku = f / v_wind;
2243
2244 realT kp = sqrt( pow( ku + m / D, 2 ) + pow( kv + n / D, 2 ) );
2245 realT kpp = sqrt( pow( ku - m / D, 2 ) + pow( kv - n / D, 2 ) );
2246
2247 realT Q1 = math::func::jinc( math::pi<realT>() * D * kp );
2248
2249 realT Q2 = math::func::jinc( math::pi<realT>() * D * kpp );
2250
2251 realT Q = ( Q1 + p * Q2 );
2252
2253 realT P =
2254 Fp->m_aosys->psd( Fp->m_aosys->atm, Fp->_layer_i, sqrt( pow( ku, 2 ) + pow( kv, 2 ) ), Fp->m_aosys->secZeta() );
2255
2256 return P * Q * Q;
2257}
2258
2259template <typename realT>
2260void turbBoilCubic(
2261 realT &a, realT &b, realT &c, realT &d, const realT &kv, const realT &f, const realT &Vu, const realT &f0, int pm )
2262{
2263 a = Vu * Vu * Vu;
2264 b = -( 3 * Vu * Vu * f + pm * f0 * f0 * f0 );
2265 c = 3 * f * f * Vu;
2266 d = -( f * f * f + pm * f0 * f0 * f0 * kv * kv );
2267}
2268
2269/// Worker function for GSL Integration for the modified Fourier modes.
2270/** \ingroup mxAOAnalytic
2271 */
2272template <typename realT, typename aosysT>
2273realT F_mod( realT kv, void *params )
2274{
2276
2277 realT f = Fp->m_f;
2278 realT v_wind = Fp->m_aosys->atm.layer_v_wind( Fp->_layer_i );
2279
2280 realT D = Fp->m_aosys->D();
2281 realT m = Fp->m_m;
2282 realT n = Fp->m_n;
2283
2284 realT f0 = Fp->m_f0;
2285
2286 realT ku;
2287 if( f0 == 0 )
2288 {
2289 ku = f / v_wind;
2290
2291 if( Fp->m_spatialFilter )
2292 {
2293 // de-rotate the spatial frequency vector back to pupil coordinates
2294 realT dku = ku * Fp->m_cq - kv * Fp->m_sq;
2295 realT dkv = ku * Fp->m_sq + kv * Fp->m_cq;
2296 // Return if spatially filtered
2297 if( fabs( dku ) >= Fp->m_aosys->spatialFilter_ku() )
2298 return 0;
2299
2300 if( fabs( dkv ) >= Fp->m_aosys->spatialFilter_kv() )
2301 return 0;
2302 }
2303
2304 realT kp = sqrt( pow( ku + m / D, 2 ) + pow( kv + n / D, 2 ) );
2305 realT kpp = sqrt( pow( ku - m / D, 2 ) + pow( kv - n / D, 2 ) );
2306
2307 realT Jp = math::func::jinc( math::pi<realT>() * D * kp );
2308
2309 realT Jm = math::func::jinc( math::pi<realT>() * D * kpp );
2310
2311 realT QQ = 2 * ( Jp * Jp + Jm * Jm );
2312
2313 realT P = Fp->m_aosys->psd( Fp->m_aosys->atm,
2314 Fp->_layer_i,
2315 sqrt( pow( ku, 2 ) + pow( kv, 2 ) ),
2316 Fp->m_aosys->lam_sci(),
2317 Fp->m_aosys->lam_wfs(),
2318 Fp->m_aosys->secZeta() );
2319
2320 return P * QQ;
2321 }
2322 else
2323 {
2324 realT a, b, c, d, p, q;
2325
2326 turbBoilCubic( a, b, c, d, kv, f, v_wind, f0, 1 );
2327 mx::math::cubicDepressed( p, q, a, b, c, d );
2328 realT t = mx::math::cubicRealRoot( p, q );
2329
2330 ku = t - b / ( 3 * a );
2331
2332 if( Fp->m_spatialFilter )
2333 {
2334 // de-rotate the spatial frequency vector back to pupil coordinates
2335 realT dku = ku * Fp->m_cq - kv * Fp->m_sq;
2336 realT dkv = ku * Fp->m_sq + kv * Fp->m_cq;
2337 // Return if spatially filtered
2338 if( fabs( dku ) >= Fp->m_aosys->spatialFilter_ku() )
2339 return 0;
2340
2341 if( fabs( dkv ) >= Fp->m_aosys->spatialFilter_kv() )
2342 return 0;
2343 }
2344
2345 realT kp = sqrt( pow( ku + m / D, 2 ) + pow( kv + n / D, 2 ) );
2346 realT kpp = sqrt( pow( ku - m / D, 2 ) + pow( kv - n / D, 2 ) );
2347
2348 realT Jp = math::func::jinc( math::pi<realT>() * D * kp );
2349
2350 realT Jm = math::func::jinc( math::pi<realT>() * D * kpp );
2351
2352 realT QQ = 2 * ( Jp * Jp + Jm * Jm );
2353
2354 realT P1 = Fp->m_aosys->psd( Fp->m_aosys->atm,
2355 Fp->_layer_i,
2356 sqrt( pow( ku, 2 ) + pow( kv, 2 ) ),
2357 Fp->m_aosys->lam_sci(),
2358 Fp->m_aosys->lam_wfs(),
2359 Fp->m_aosys->secZeta() );
2360
2361 P1 *= QQ;
2362
2363 turbBoilCubic( a, b, c, d, kv, f, v_wind, f0, -1 );
2364 mx::math::cubicDepressed( p, q, a, b, c, d );
2365 t = mx::math::cubicRealRoot( p, q );
2366
2367 ku = t - b / ( 3 * a );
2368
2369 if( Fp->m_spatialFilter )
2370 {
2371 // de-rotate the spatial frequency vector back to pupil coordinates
2372 realT dku = ku * Fp->m_cq - kv * Fp->m_sq;
2373 realT dkv = ku * Fp->m_sq + kv * Fp->m_cq;
2374 // Return if spatially filtered
2375 if( fabs( dku ) >= Fp->m_aosys->spatialFilter_ku() )
2376 return 0;
2377
2378 if( fabs( dkv ) >= Fp->m_aosys->spatialFilter_kv() )
2379 return 0;
2380 }
2381
2382 kp = sqrt( pow( ku + m / D, 2 ) + pow( kv + n / D, 2 ) );
2383 kpp = sqrt( pow( ku - m / D, 2 ) + pow( kv - n / D, 2 ) );
2384
2385 Jp = math::func::jinc( math::pi<realT>() * D * kp );
2386
2387 Jm = math::func::jinc( math::pi<realT>() * D * kpp );
2388
2389 QQ = 2 * ( Jp * Jp + Jm * Jm );
2390
2391 realT P2 = Fp->m_aosys->psd( Fp->m_aosys->atm,
2392 Fp->_layer_i,
2393 sqrt( pow( ku, 2 ) + pow( kv, 2 ) ),
2394 Fp->m_aosys->lam_sci(),
2395 Fp->m_aosys->lam_wfs(),
2396 Fp->m_aosys->secZeta() );
2397
2398 P2 *= QQ;
2399
2400 return P1 + P2;
2401 }
2402}
2403
2404/// Worker function for GSL Integration for a basis projected onto the modified Fourier modes.
2405/** \ingroup mxAOAnalytic
2406 */
2407template <typename realT, typename aosysT>
2408realT Fm_projMod( realT kv, void *params )
2409{
2411
2412 realT f = Fp->m_f;
2413 realT v_wind = Fp->m_aosys->atm.layer_v_wind( Fp->_layer_i );
2414
2415 realT q_wind = Fp->m_aosys->atm.layer_dir( Fp->_layer_i );
2416
2417 // For rotating the basis
2418 realT cq = cos( q_wind );
2419 realT sq = sin( q_wind );
2420
2421 realT D = Fp->m_aosys->D();
2422
2423 int mode_i = Fp->m_mode_i;
2424
2425 realT m;
2426 realT n;
2427 int p, pp; // = Fp->m_p;
2428
2429 realT ku = f / v_wind;
2430
2431 realT kp, km, Jp, Jpp, Jm, Jmp, QQ;
2432
2433 QQ = 0;
2434
2435 for( int i = 0; i < Fp->m_modeCoeffs.cols(); ++i )
2436 {
2437 if( Fp->m_modeCoeffs( i, Fp->m_modeCoeffs.cols() - 1 - mode_i ) == 0 )
2438 continue;
2439
2440 m = Fp->ms[i] * cq + Fp->ns[i] * sq;
2441 n = -Fp->ms[i] * sq + Fp->ns[i] * cq;
2442
2443 kp = sqrt( pow( ku + m / D, 2 ) + pow( kv + n / D, 2 ) );
2444 km = sqrt( pow( ku - m / D, 2 ) + pow( kv - n / D, 2 ) );
2445
2446 Fp->Jps[i] = math::func::jinc( math::pi<realT>() * D * kp );
2447 Fp->Jms[i] = math::func::jinc( math::pi<realT>() * D * km );
2448 }
2449
2450 int N = Fp->m_modeCoeffs.cols();
2451
2452 realT sc;
2453
2454 for( int i = 0; i < N; ++i )
2455 {
2456 if( fabs( Fp->m_modeCoeffs( i, Fp->m_modeCoeffs.cols() - 1 - mode_i ) ) < Fp->m_minCoeffVal )
2457 continue;
2458
2459 Jp = Fp->Jps[i];
2460 Jm = Fp->Jms[i];
2461 p = Fp->ps[i];
2462
2463 QQ += 2 * ( Jp * Jp + Jm * Jm ) * Fp->m_modeCoeffs( i, Fp->m_modeCoeffs.cols() - 1 - mode_i ) *
2464 Fp->m_modeCoeffs( mode_i, i );
2465
2466 for( int j = ( i + 1 ); j < N; ++j )
2467 {
2468 if( fabs( Fp->m_modeCoeffs( j, Fp->m_modeCoeffs.cols() - 1 - mode_i ) ) < Fp->m_minCoeffVal )
2469 continue;
2470 sc = Fp->m_modeCoeffs( i, Fp->m_modeCoeffs.cols() - 1 - mode_i ) *
2471 Fp->m_modeCoeffs( j, Fp->m_modeCoeffs.cols() - 1 - mode_i );
2472
2473 // if(fabs(sc) < m_minCoeffProduct) continue;
2474
2475 // if( sc*sc < 1e-2) continue;
2476 Jpp = Fp->Jps[j];
2477
2478 Jmp = Fp->Jms[j];
2479
2480 pp = Fp->ps[j];
2481
2482 if( p == pp )
2483 {
2484 QQ += 2 * 2 * ( Jp * Jpp + Jm * Jmp ) * sc;
2485 }
2486 else
2487 {
2488 QQ += 2 * 2 * ( Jp * Jmp + Jm * Jpp ) * sc;
2489 }
2490 }
2491 }
2492
2493 // realT QQ = 2*(Jp*Jp + Jm*Jm);
2494
2495 realT P = Fp->m_aosys->psd( Fp->m_aosys->atm,
2496 Fp->_layer_i,
2497 sqrt( pow( ku, 2 ) + pow( kv, 2 ) ),
2498 Fp->m_aosys->lam_sci(),
2499 Fp->m_aosys->lam_wfs(),
2500 Fp->m_aosys->secZeta() );
2501
2502 return P * QQ;
2503}
2504
2505/*extern template
2506struct fourierTemporalPSD<float, aoSystem<float, vonKarmanSpectrum<float>, std::ostream>>;*/
2507
2508extern template struct fourierTemporalPSD<double, aoSystem<double, vonKarmanSpectrum<double>, std::ostream>>;
2509
2510/*
2511extern template
2512struct fourierTemporalPSD<long double, aoSystem<long double, vonKarmanSpectrum<long double>, std::ostream>>;
2513
2514#ifdef HASQUAD
2515extern template
2516struct fourierTemporalPSD<__float128, aoSystem<__float128, vonKarmanSpectrum<__float128>, std::ostream>>;
2517#endif
2518*/
2519
2520} // namespace analysis
2521} // namespace AO
2522} // namespace mx
2523
2524#endif // fourierTemporalPSD_hpp
Calculate and provide constants related to adaptive optics.
Spatial power spectra used in adaptive optics.
Declares and defines an analytical AO system.
Provides a class to manage closed loop gain linear predictor determination.
Provides a class to manage closed loop gain optimization.
Class to manage interactions with a FITS file.
Definition fitsFile.hpp:52
int write(const dataT *im, int d1, int d2, int d3, fitsHeader *head)
Write the contents of a raw array to the FITS file.
int read(dataT *data)
Read the contents of the FITS file into an array.
Definition fitsFile.hpp:829
An image cube with an Eigen-like API.
Definition eigenCube.hpp:30
Eigen::Map< Eigen::Array< dataT, Eigen::Dynamic, Eigen::Dynamic > > image(Index n)
Returns a 2D Eigen::Eigen::Map pointed at the specified image.
A class to track the number of iterations in an OMP parallelized loop.
void incrementAndOutputStatus()
Increment and output status.
void seed(typename ranengT::result_type seedval)
Set the seed of the random engine.
Definition randomT.hpp:101
Calculate the average periodogram of a time-series.
int resize(size_t avgLen)
Resize the periodogram working memory, setting up the 1/2-overlapped optimum case.
size_t size()
Return the size of the periodogram.
std::vector< realT > & win()
Get a reference to the window vector.
@ modified
The modified Fourier basis from .
@ basic
The basic sine and cosine Fourier modes.
int writeBinVector(const std::string &fname, std::vector< dataT > &vec)
Write a BinVector file to disk.
int readBinVector(std::vector< dataT > &vec, const std::string &fname)
Read a BinVector file from disk.
Eigen::Array< scalarT, -1, -1 > eigenImage
Definition of the eigenImage type, which is an alias for Eigen::Array.
int createDirectories(const std::string &path)
Create a directory or directories.
Definition fileUtils.cpp:52
@ backward
Specifies the backward transform.
T jinc(const T &x)
The Jinc function.
Definition jinc.hpp:61
constexpr floatT six_fifths()
Return 6/5 in the specified precision.
realT Fm_projMod(realT kv, void *params)
Worker function for GSL Integration for a basis projected onto the modified Fourier modes.
realT F_basic(realT kv, void *params)
Worker function for GSL Integration for the basic sin/cos Fourier modes.
realT F_mod(realT kv, void *params)
Worker function for GSL Integration for the modified Fourier modes.
void augment1SidedPSD(vectorTout &psdTwoSided, vectorTin &psdOneSided, bool addZeroFreq=false, typename vectorTin::value_type scale=0.5)
Augment a 1-sided PSD to standard 2-sided FFT form.
Definition psdUtils.hpp:817
void augment1SidedPSDFreq(std::vector< T > &freqTwoSided, std::vector< T > &freqOneSided)
Augment a 1-sided frequency scale to standard FFT form.
Definition psdUtils.hpp:876
realT psdVar(const std::vector< realT > &f, const std::vector< realT > &PSD, realT half=0.5)
Calculate the variance of a 1-D PSD.
Definition psdUtils.hpp:136
int normPSD(std::vector< floatT > &psd, std::vector< floatT > &f, floatParamT normT, floatT fmin=std::numeric_limits< floatT >::min(), floatT fmax=std::numeric_limits< floatT >::max())
Normalize a 1-D PSD to have a given variance.
Definition psdUtils.hpp:447
void hann(realT *filt, int N)
The Hann Window.
std::string convertToString(const typeT &value, int precision=0)
Convert a numerical value to a string.
void vectorMeanSub(valueT *vec, size_t sz)
Subtract the mean from a vector.
void vectorScale(vectorT &vec, size_t N=0, typename vectorT::value_type scale=0, typename vectorT::value_type offset=0)
Fill in a vector with a regularly spaced scale.
valueT vectorVariance(const valueT *vec, size_t sz, valueT mean)
Calculate the variance of a vector relative to a supplied mean value.
The mxlib c++ namespace.
Definition mxError.hpp:106
Calculates the PSD of speckle intensity given a modified Fourier mode amplitude PSD.
int speckleAmpPSD(std::vector< realT > &spFreq, std::vector< realT > &spPSD, const std::vector< realT > &freq, const std::vector< realT > &fmPSD, const std::vector< std::complex< realT > > &fmXferFxn, const std::vector< realT > &nPSD, const std::vector< std::complex< realT > > &nXferFxn, int N, std::vector< realT > *vars=nullptr, std::vector< realT > *bins=nullptr, bool noPSD=false)
Calculate the PSD of the speckle intensity given the PSD of Fourier mode amplitude.
Class to manage the calculation of linear predictor coefficients for a closed-loop AO system.
int regularizeCoefficients(realT &gmax_lp, realT &gopt_lp, realT &var_lp, clGainOpt< realT > &go_lp, std::vector< realT > &PSDt, std::vector< realT > &PSDn, int Nc)
Regularize the PSD and calculate the associated LP coefficients.
Class to manage the calculation of temporal PSDs of the Fourier modes in atmospheric turbulence.
int _layer_i
The index of the current layer.
gsl_integration_workspace * _w
Workspace for the gsl integrators, allocated to WSZ if constructed as worker (with allocate == true).
int multiLayerPSD(std::vector< realT > &PSD, std::vector< realT > &freq, realT m, realT n, int p, realT fmax=0)
Calculate the temporal PSD for a Fourier mode in a multi-layer model.
int getGridFreq(std::vector< realT > &freq, const std::string &dir)
Get the frequency scale for a PSD grid.
int analyzePSDGrid(const std::string &subDir, const std::string &psdDir, int mnMax, int mnCon, realT gfixed, int lpNc, realT lpRegPrecision, std::vector< realT > &mags, int lifetimeTrials=0, bool uncontrolledLifetimes=false, bool writePSDs=false, bool writeXfer=false)
Analyze a PSD grid under closed-loop control.
realT m_f0
the Berdja boiling parameter
int intensityPSD(const std::string &subDir, const std::string &psdDir, const std::string &CvdPath, int mnMax, int mnCon, const std::string &si_or_lp, std::vector< realT > &mags, int lifetimeTrials, bool writePSDs)
int getGridPSD(std::vector< realT > &psd, const std::string &dir, int m, int n)
Get a single PSD from a PSD grid.
realT relTol()
Get the current relative tolerance.
realT _absTol
The absolute tolerance to use in the GSL integrator.
Eigen::Array< realT, -1, -1 > m_modeCoeffs
Coeeficients of the projection onto the Fourier modes.
realT m_cq
The cosine of the wind direction.
aosysT * m_aosys
Pointer to an AO system structure.
realT m_spatialFilter
Flag indicating if a spatial filter is applied.
realT _relTol
The relative tolerance to use in the GSL integrator.
_realT realT
The type for arithmetic.
std::complex< realT > complexT
The complex type for arithmetic.
int singleLayerPSD(std::vector< realT > &PSD, std::vector< realT > &freq, realT m, realT n, int layer_i, int p, realT fmax=0)
Calculate the temporal PSD for a Fourier mode for a single layer.
realT m_sq
The sine of the wind direction.
void makePSDGrid(const std::string &dir, int mnMax, realT dFreq, realT maxFreq, realT fmax=0)
Calculate PSDs over a grid of spatial frequencies.
void initialize()
Initialize parameters to default values.
realT fastestPeak(int m, int n)
Determine the frequency of the highest V-dot-k peak.
realT m_f
the current temporal frequency
realT m_m
the spatial frequency m index
int m_mode_i
Projected basis mode index.
realT m_n
the spatial frequency n index
realT absTol()
Get the current absolute tolerance.
Calculate the variance of the mean for a process given its PSD.
A utility to convert a wavefront variance map to an intensity image.
Declares and defines a function to calculate the measurement noise PSD.